Abstract

The progress, and current challenges, in fabricating rare-earth-doped chalcogenide-glass fibers for developing mid-infrared (IR) fiber lasers are reviewed. For the first time a coherent explanation is forwarded for the failure to date to develop a gallium-lanthanum-sulfide glass mid-IR fiber laser. For the more covalent chalcogenide glasses, the importance of optimizing the glass host and glass processing routes in order to minimize non-radiative decay and to avoid rare earth ion clustering and glass devitrification is discussed. For the first time a new idea is explored to explain an additional method of non-radiative depopulation of the excited state in the mid-IR that has not been properly recognized before: that of impurity multiphonon relaxation. Practical characterization of candidate selenide glasses is presented. Potential applications of mid-infrared fiber lasers are suggested.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Guo, Y. Wang, C. Peng, H. L. Zhang, G. P. Luo, H. Q. Le, C. Gmachl, D. L. Sivco, M. L. Peabody, and A. Y. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12(1), 208–219 (2004).
    [CrossRef] [PubMed]
  2. M. Ebrahim-Zadeh, I. T. Sorokina eds. Mid-infrared coherent sources and applications, NATO Science for Peace and Security, Series B: Physics and Biophysics. (Springer Verlag, The Netherlands, 2008).
  3. R. Reisfeld, and C. K. Jorgensen, Lasers and excited states of rare earths. Inorganic Chemistry Concepts 1. (Springer-Verlag, New York, 1977).
  4. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare earth ions in oxide glasses,” Phys. Rev. B 16(1), 10–20 (1977).
    [CrossRef]
  5. R. Reisfeld and M. Eyal, “Possible ways of relaxation of excited states of rare earth ions in amorphous media,” J. Phys. C7, 349–355 (1985).
  6. P. W. France ed. Optical fiber lasers and amplifiers (Blackie, London, 1991).
  7. B. G. Aitken and C. W. Ponader, “Physical properties and Raman spectroscopy of GeAs sulfide glasses,” J. Non-Cryst. Solids 256-257, 143–148 (1999).
    [CrossRef]
  8. V. Q. Nguyen, J. S. Sanghera, J. A. Freitas, I. D. Aggarwal, and I. K. Lloyd, “Structural investigation of chalcogenide and chalcohalide glasses using Raman spectroscopy,” J. Non-Cryst. Solids 248(2-3), 103–114 (1999).
    [CrossRef]
  9. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
    [CrossRef]
  10. A. Hrubý, “Evaluation of glass-forming tendency by means of DTA,” Czech. J. Phys. 22(11), 1187–1193 (1972).
    [CrossRef]
  11. D. Furniss, and A. B. Seddon, “Thermal analysis of inorganic compound glasses and glass-ceramics”, P. Gabbott ed. Principles and applications of thermal analysis (Blackwell, Oxford, 2008).
  12. D. J. Brady and T. Schweizer, “Minimum loss predictions and measurements in gallium lanthanum sulfide based glasses and fibers,” J. Non-Cryst. Solids 242, 92–98 (1998).
    [CrossRef]
  13. R. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role in oxide content in the formation and crystallization of gallium lanthanum-sulfide glasses,” J. Mater. Res. 14(6), 2621–2627 (1999).
    [CrossRef]
  14. J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, and A. B. Seddon, “Analysis of oxide content in gallium-lanthanum-sulfide (GLS) glasses by infrared absorption spectroscopy,” Phys. Chem. Glasses 44(4), 267–271 (2003).
  15. D. Furniss and A.B. Seddon, unpublished work.
  16. H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” Am. Mineral. 50, 132–147 (1965).
  17. T. Schweizer, “Rare-earth-doped sulfide glasses for mid-infrared fiber lasers”, PhD thesis, ORC, University of Southampton,UK, and Inst. Für Laser Physic, Universität Hamburg, Germany (1998).
  18. V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibers,” Infrared Phys. Technol. 45(2), 115–123 (2004).
    [CrossRef]
  19. Z. Tang, D. Furniss, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses”, presented at the Int. Symp. Non-Oxide and New Optical Glasses (ISNOG) 2010 and submitted to J Non-Cryst Solids.
  20. W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
    [CrossRef]
  21. D. S. Ma, P. S. Danielson, and C. T. Moynihan, “Bulk and impurity infrared-absorption in 0.5As2Se3-0.5GeSe2 glass,” J. Non-Cryst. Solids 37(2), 181–190 (1980).
    [CrossRef]
  22. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
    [CrossRef]
  23. C. N. Banwell, Fundamentals of molecular spectroscopy (McGraw-Hill, London, 1966).
  24. R. S. Quimby and B. G. Aitken, “Multiphonon gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320(1-3), 100–112 (2003).
    [CrossRef]
  25. V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
    [CrossRef]
  26. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
    [CrossRef]
  27. J. Heo, “Emission and local structure of rare-earth ions in chalcogenide glasses,” J. Non-Cryst. Solids 353(13-15), 1358–1363 (2007).
    [CrossRef]
  28. S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by the broadband Urbach edge absorption,” J. Non-Cryst. Solids 266–269, 876–883 (2000).
    [CrossRef]
  29. H. Harada and K. Tanaka, “Photoluminescence from Pr3+doped chalcogenide glasses excited by bandgap light,” J. Non-Cryst. Solids 246(3), 189–196 (1999).
    [CrossRef]
  30. B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis in neodymium-doped silica based optical fiber,” Mater. Lett. 8(6-7), 204–208 (1989).
    [CrossRef]
  31. V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterisation of nano-scale, Er3+ - doped, ultra-transparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
    [CrossRef]
  32. J. M. Parker, A. B. Seddon, and A. G. Clare, “Crystallization of ZrF4-BaF2-NaF-AlF3-LaF3 glasses,” Phys. Chem. Glasses 28(1), 4–10 (1987).
  33. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium-lanthanum-sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
    [CrossRef] [PubMed]
  34. S. Sen and J. F. Stebbins, “Structural role of Nd3+ and Al3+ cations in SiO2 glass: a 29Si MAS-NMR spin-lattice relaxation, 27Al NMR and EPR study,” J. Non-Cryst. Solids 188(1-2), 54–62 (1995).
    [CrossRef]
  35. B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
    [CrossRef]
  36. T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence for formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
    [CrossRef]
  37. D. Ležal, M. Poulain, and J. Zavadil, “Sulfide glasses doped with rare earth elements,” Ceramics-Silikáty 45(3), 105–110 (2001).
  38. A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88(9), 2451–2455 (2005).
    [CrossRef]
  39. A. B. Seddon, V. K. Tikhomirov, H. Rowe, and D. Furniss, “Temperature dependence of viscosity of Er3+-doped oxyfluoride glasses and nano-glass-ceramics,” J. Mater. Sci. 18, S145–S151 (2007).
  40. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
    [CrossRef]
  41. E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003).
    [CrossRef]
  42. M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
    [CrossRef]
  43. R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient ouput at 4.5 μm,” IEEE Photon. Technol. Lett. 20(2), 123–125 (2008).
    [CrossRef]
  44. S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, Opt. Quantum Electron. (submitted to).
  45. F. Prudenzano, L. Mescia, L. A. Alligretti, M. de Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Desig of ER3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
    [CrossRef]
  46. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [CrossRef]
  47. G. S. Ofelt, “Intensity of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [CrossRef]
  48. B. Cole, J. Sanghera, B. Shaw, B. Harbison, and I. D. Aggarwal, “Low phonon energy glass and fiber doped with rare earth”, US Patent 6,128,429 (2000).
  49. J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
    [CrossRef]
  50. J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
    [CrossRef]
  51. T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium-doped gallium lanthanum sulfide fibers for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
    [CrossRef] [PubMed]
  52. T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulfide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
    [CrossRef]
  53. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
    [CrossRef] [PubMed]
  54. T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission and ion-ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 16(2), 308–316 (1999).
    [CrossRef]

2009

T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence for formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
[CrossRef]

F. Prudenzano, L. Mescia, L. A. Alligretti, M. de Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Desig of ER3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

2008

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient ouput at 4.5 μm,” IEEE Photon. Technol. Lett. 20(2), 123–125 (2008).
[CrossRef]

V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[CrossRef]

2007

A. B. Seddon, V. K. Tikhomirov, H. Rowe, and D. Furniss, “Temperature dependence of viscosity of Er3+-doped oxyfluoride glasses and nano-glass-ceramics,” J. Mater. Sci. 18, S145–S151 (2007).

J. Heo, “Emission and local structure of rare-earth ions in chalcogenide glasses,” J. Non-Cryst. Solids 353(13-15), 1358–1363 (2007).
[CrossRef]

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

2006

2005

A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88(9), 2451–2455 (2005).
[CrossRef]

2004

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibers,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[CrossRef]

B. Guo, Y. Wang, C. Peng, H. L. Zhang, G. P. Luo, H. Q. Le, C. Gmachl, D. L. Sivco, M. L. Peabody, and A. Y. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12(1), 208–219 (2004).
[CrossRef] [PubMed]

2003

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, and A. B. Seddon, “Analysis of oxide content in gallium-lanthanum-sulfide (GLS) glasses by infrared absorption spectroscopy,” Phys. Chem. Glasses 44(4), 267–271 (2003).

E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003).
[CrossRef]

R. S. Quimby and B. G. Aitken, “Multiphonon gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320(1-3), 100–112 (2003).
[CrossRef]

2002

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterisation of nano-scale, Er3+ - doped, ultra-transparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

2001

D. Ležal, M. Poulain, and J. Zavadil, “Sulfide glasses doped with rare earth elements,” Ceramics-Silikáty 45(3), 105–110 (2001).

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[CrossRef]

2000

S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by the broadband Urbach edge absorption,” J. Non-Cryst. Solids 266–269, 876–883 (2000).
[CrossRef]

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

1999

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulfide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission and ion-ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 16(2), 308–316 (1999).
[CrossRef]

H. Harada and K. Tanaka, “Photoluminescence from Pr3+doped chalcogenide glasses excited by bandgap light,” J. Non-Cryst. Solids 246(3), 189–196 (1999).
[CrossRef]

R. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role in oxide content in the formation and crystallization of gallium lanthanum-sulfide glasses,” J. Mater. Res. 14(6), 2621–2627 (1999).
[CrossRef]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
[CrossRef]

B. G. Aitken and C. W. Ponader, “Physical properties and Raman spectroscopy of GeAs sulfide glasses,” J. Non-Cryst. Solids 256-257, 143–148 (1999).
[CrossRef]

V. Q. Nguyen, J. S. Sanghera, J. A. Freitas, I. D. Aggarwal, and I. K. Lloyd, “Structural investigation of chalcogenide and chalcohalide glasses using Raman spectroscopy,” J. Non-Cryst. Solids 248(2-3), 103–114 (1999).
[CrossRef]

1998

D. J. Brady and T. Schweizer, “Minimum loss predictions and measurements in gallium lanthanum sulfide based glasses and fibers,” J. Non-Cryst. Solids 242, 92–98 (1998).
[CrossRef]

1997

1996

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
[CrossRef] [PubMed]

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[CrossRef]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[CrossRef]

1995

S. Sen and J. F. Stebbins, “Structural role of Nd3+ and Al3+ cations in SiO2 glass: a 29Si MAS-NMR spin-lattice relaxation, 27Al NMR and EPR study,” J. Non-Cryst. Solids 188(1-2), 54–62 (1995).
[CrossRef]

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[CrossRef]

1989

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis in neodymium-doped silica based optical fiber,” Mater. Lett. 8(6-7), 204–208 (1989).
[CrossRef]

1987

J. M. Parker, A. B. Seddon, and A. G. Clare, “Crystallization of ZrF4-BaF2-NaF-AlF3-LaF3 glasses,” Phys. Chem. Glasses 28(1), 4–10 (1987).

1985

R. Reisfeld and M. Eyal, “Possible ways of relaxation of excited states of rare earth ions in amorphous media,” J. Phys. C7, 349–355 (1985).

1980

D. S. Ma, P. S. Danielson, and C. T. Moynihan, “Bulk and impurity infrared-absorption in 0.5As2Se3-0.5GeSe2 glass,” J. Non-Cryst. Solids 37(2), 181–190 (1980).
[CrossRef]

1977

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare earth ions in oxide glasses,” Phys. Rev. B 16(1), 10–20 (1977).
[CrossRef]

1972

A. Hrubý, “Evaluation of glass-forming tendency by means of DTA,” Czech. J. Phys. 22(11), 1187–1193 (1972).
[CrossRef]

1965

H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” Am. Mineral. 50, 132–147 (1965).

1962

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensity of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Adam, J.-L.

V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[CrossRef]

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

Adler, H. H.

H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” Am. Mineral. 50, 132–147 (1965).

Aggarwal, I. D.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient ouput at 4.5 μm,” IEEE Photon. Technol. Lett. 20(2), 123–125 (2008).
[CrossRef]

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium-lanthanum-sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
[CrossRef] [PubMed]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[CrossRef]

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
[CrossRef]

V. Q. Nguyen, J. S. Sanghera, J. A. Freitas, I. D. Aggarwal, and I. K. Lloyd, “Structural investigation of chalcogenide and chalcohalide glasses using Raman spectroscopy,” J. Non-Cryst. Solids 248(2-3), 103–114 (1999).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[CrossRef]

Ainslie, B. J.

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis in neodymium-doped silica based optical fiber,” Mater. Lett. 8(6-7), 204–208 (1989).
[CrossRef]

Aitken, B. G.

R. S. Quimby and B. G. Aitken, “Multiphonon gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320(1-3), 100–112 (2003).
[CrossRef]

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[CrossRef]

S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by the broadband Urbach edge absorption,” J. Non-Cryst. Solids 266–269, 876–883 (2000).
[CrossRef]

B. G. Aitken and C. W. Ponader, “Physical properties and Raman spectroscopy of GeAs sulfide glasses,” J. Non-Cryst. Solids 256-257, 143–148 (1999).
[CrossRef]

Alligretti, L. A.

F. Prudenzano, L. Mescia, L. A. Alligretti, M. de Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Desig of ER3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

Badding, J. V.

A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88(9), 2451–2455 (2005).
[CrossRef]

Bagshaw, H.

R. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role in oxide content in the formation and crystallization of gallium lanthanum-sulfide glasses,” J. Mater. Res. 14(6), 2621–2627 (1999).
[CrossRef]

Beggiora, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterisation of nano-scale, Er3+ - doped, ultra-transparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Benson, T. M.

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, Opt. Quantum Electron. (submitted to).

Beres-Pawlik, E.

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, Opt. Quantum Electron. (submitted to).

Bishop, S. G.

S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by the broadband Urbach edge absorption,” J. Non-Cryst. Solids 266–269, 876–883 (2000).
[CrossRef]

Brady, D. J.

D. J. Brady and T. Schweizer, “Minimum loss predictions and measurements in gallium lanthanum sulfide based glasses and fibers,” J. Non-Cryst. Solids 242, 92–98 (1998).
[CrossRef]

T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium-doped gallium lanthanum sulfide fibers for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
[CrossRef] [PubMed]

Brocklesby, W. S.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulfide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission and ion-ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 16(2), 308–316 (1999).
[CrossRef]

Busse, L. E.

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

Canat, G.

V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[CrossRef]

Cho, A. Y.

Churbanov, M. F.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003).
[CrossRef]

Clare, A. G.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[CrossRef]

J. M. Parker, A. B. Seddon, and A. G. Clare, “Crystallization of ZrF4-BaF2-NaF-AlF3-LaF3 glasses,” Phys. Chem. Glasses 28(1), 4–10 (1987).

Cole, B.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[CrossRef]

Cole, B. C.

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

Craig, S. P.

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis in neodymium-doped silica based optical fiber,” Mater. Lett. 8(6-7), 204–208 (1989).
[CrossRef]

Danielson, P. S.

D. S. Ma, P. S. Danielson, and C. T. Moynihan, “Bulk and impurity infrared-absorption in 0.5As2Se3-0.5GeSe2 glass,” J. Non-Cryst. Solids 37(2), 181–190 (1980).
[CrossRef]

de Sario, M.

F. Prudenzano, L. Mescia, L. A. Alligretti, M. de Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Desig of ER3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

Devyatykh, G. G.

E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003).
[CrossRef]

Dianov, E. M.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003).
[CrossRef]

Doualan, J.-L.

V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[CrossRef]

Eason, R. W.

A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88(9), 2451–2455 (2005).
[CrossRef]

Elliott, S. R.

T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence for formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
[CrossRef]

Eyal, M.

R. Reisfeld and M. Eyal, “Possible ways of relaxation of excited states of rare earth ions in amorphous media,” J. Phys. C7, 349–355 (1985).

Ferrari, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterisation of nano-scale, Er3+ - doped, ultra-transparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Frantz, J. A.

Freitas, J. A.

V. Q. Nguyen, J. S. Sanghera, J. A. Freitas, I. D. Aggarwal, and I. K. Lloyd, “Structural investigation of chalcogenide and chalcohalide glasses using Raman spectroscopy,” J. Non-Cryst. Solids 248(2-3), 103–114 (1999).
[CrossRef]

Furniss, D.

A. B. Seddon, V. K. Tikhomirov, H. Rowe, and D. Furniss, “Temperature dependence of viscosity of Er3+-doped oxyfluoride glasses and nano-glass-ceramics,” J. Mater. Sci. 18, S145–S151 (2007).

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibers,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[CrossRef]

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, and A. B. Seddon, “Analysis of oxide content in gallium-lanthanum-sulfide (GLS) glasses by infrared absorption spectroscopy,” Phys. Chem. Glasses 44(4), 267–271 (2003).

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterisation of nano-scale, Er3+ - doped, ultra-transparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

R. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role in oxide content in the formation and crystallization of gallium lanthanum-sulfide glasses,” J. Mater. Res. 14(6), 2621–2627 (1999).
[CrossRef]

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, Opt. Quantum Electron. (submitted to).

Gadret, G.

V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[CrossRef]

Gerasimenko, V. V.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

Gmachl, C.

Grivas, C.

A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88(9), 2451–2455 (2005).
[CrossRef]

Guo, B.

Hand, R. J.

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, and A. B. Seddon, “Analysis of oxide content in gallium-lanthanum-sulfide (GLS) glasses by infrared absorption spectroscopy,” Phys. Chem. Glasses 44(4), 267–271 (2003).

Harada, H.

H. Harada and K. Tanaka, “Photoluminescence from Pr3+doped chalcogenide glasses excited by bandgap light,” J. Non-Cryst. Solids 246(3), 189–196 (1999).
[CrossRef]

Harbison, B. B.

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

Hector, J. R.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulfide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission and ion-ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 16(2), 308–316 (1999).
[CrossRef]

Heo, J.

J. Heo, “Emission and local structure of rare-earth ions in chalcogenide glasses,” J. Non-Cryst. Solids 353(13-15), 1358–1363 (2007).
[CrossRef]

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[CrossRef]

Hewak, D. W.

A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88(9), 2451–2455 (2005).
[CrossRef]

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulfide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission and ion-ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 16(2), 308–316 (1999).
[CrossRef]

T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium-doped gallium lanthanum sulfide fibers for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
[CrossRef] [PubMed]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
[CrossRef] [PubMed]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

Hrubý, A.

A. Hrubý, “Evaluation of glass-forming tendency by means of DTA,” Czech. J. Phys. 22(11), 1187–1193 (1972).
[CrossRef]

Huang, C. C.

A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88(9), 2451–2455 (2005).
[CrossRef]

Huber, G.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

Huoizot, P.

V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[CrossRef]

Jensen, T.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Kangley, R. I.

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, and A. B. Seddon, “Analysis of oxide content in gallium-lanthanum-sulfide (GLS) glasses by infrared absorption spectroscopy,” Phys. Chem. Glasses 44(4), 267–271 (2003).

Kerr, P. F.

H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” Am. Mineral. 50, 132–147 (1965).

King, W. A.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[CrossRef]

Koleskin, S. A.

E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003).
[CrossRef]

Koltasev, V. V.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

Kung, F.

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

Kung, F. H.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[CrossRef]

Lacourse, W. C.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[CrossRef]

Layne, C. B.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare earth ions in oxide glasses,” Phys. Rev. B 16(1), 10–20 (1977).
[CrossRef]

Le, H. Q.

Lee, T. H.

T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence for formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
[CrossRef]

Lewis, K. L.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibers,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[CrossRef]

Ležal, D.

D. Ležal, M. Poulain, and J. Zavadil, “Sulfide glasses doped with rare earth elements,” Ceramics-Silikáty 45(3), 105–110 (2001).

Li, R.

R. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role in oxide content in the formation and crystallization of gallium lanthanum-sulfide glasses,” J. Mater. Res. 14(6), 2621–2627 (1999).
[CrossRef]

Lloyd, I. K.

V. Q. Nguyen, J. S. Sanghera, J. A. Freitas, I. D. Aggarwal, and I. K. Lloyd, “Structural investigation of chalcogenide and chalcohalide glasses using Raman spectroscopy,” J. Non-Cryst. Solids 248(2-3), 103–114 (1999).
[CrossRef]

Lowdermilk, W. H.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare earth ions in oxide glasses,” Phys. Rev. B 16(1), 10–20 (1977).
[CrossRef]

Lucas, J.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

Luo, G. P.

Ma, D. S.

D. S. Ma, P. S. Danielson, and C. T. Moynihan, “Bulk and impurity infrared-absorption in 0.5As2Se3-0.5GeSe2 glass,” J. Non-Cryst. Solids 37(2), 181–190 (1980).
[CrossRef]

Mairaj, A. K.

A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88(9), 2451–2455 (2005).
[CrossRef]

Mason, P. D.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibers,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[CrossRef]

Mescia, L.

F. Prudenzano, L. Mescia, L. A. Alligretti, M. de Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Desig of ER3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

Miklos, R.

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

Milos, R. E.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[CrossRef]

Moizan, V.

F. Prudenzano, L. Mescia, L. A. Alligretti, M. de Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Desig of ER3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[CrossRef]

Moncorgé, R.

V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[CrossRef]

Montagna, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterisation of nano-scale, Er3+ - doped, ultra-transparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Mossadegh, R.

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

Moulding, K.

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis in neodymium-doped silica based optical fiber,” Mater. Lett. 8(6-7), 204–208 (1989).
[CrossRef]

Moynihan, C. T.

D. S. Ma, P. S. Danielson, and C. T. Moynihan, “Bulk and impurity infrared-absorption in 0.5As2Se3-0.5GeSe2 glass,” J. Non-Cryst. Solids 37(2), 181–190 (1980).
[CrossRef]

Nazabal, V.

F. Prudenzano, L. Mescia, L. A. Alligretti, M. de Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Desig of ER3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[CrossRef]

Nguyen, V. Q.

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

V. Q. Nguyen, J. S. Sanghera, J. A. Freitas, I. D. Aggarwal, and I. K. Lloyd, “Structural investigation of chalcogenide and chalcohalide glasses using Raman spectroscopy,” J. Non-Cryst. Solids 248(2-3), 103–114 (1999).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensity of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Orchard, D. A.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibers,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[CrossRef]

Palmisano, T.

F. Prudenzano, L. Mescia, L. A. Alligretti, M. de Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Desig of ER3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

Parker, J. M.

J. M. Parker, A. B. Seddon, and A. G. Clare, “Crystallization of ZrF4-BaF2-NaF-AlF3-LaF3 glasses,” Phys. Chem. Glasses 28(1), 4–10 (1987).

Payne, D. N.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulfide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission and ion-ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 16(2), 308–316 (1999).
[CrossRef]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
[CrossRef] [PubMed]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

Peabody, M. L.

Peng, C.

Pitois, S.

V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[CrossRef]

Plotinchenko, V. G.

E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003).
[CrossRef]

Plotnichenko, V. G.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

Ponader, C. W.

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[CrossRef]

B. G. Aitken and C. W. Ponader, “Physical properties and Raman spectroscopy of GeAs sulfide glasses,” J. Non-Cryst. Solids 256-257, 143–148 (1999).
[CrossRef]

Poulain, M.

D. Ležal, M. Poulain, and J. Zavadil, “Sulfide glasses doped with rare earth elements,” Ceramics-Silikáty 45(3), 105–110 (2001).

Prudenzano, F.

F. Prudenzano, L. Mescia, L. A. Alligretti, M. de Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Desig of ER3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

Pureza, P. C.

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[CrossRef]

Pushkin, A. A.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

Pyrkov, Y. N.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003).
[CrossRef]

Quimby, R. S.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient ouput at 4.5 μm,” IEEE Photon. Technol. Lett. 20(2), 123–125 (2008).
[CrossRef]

R. S. Quimby and B. G. Aitken, “Multiphonon gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320(1-3), 100–112 (2003).
[CrossRef]

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[CrossRef]

Reaney, I. M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterisation of nano-scale, Er3+ - doped, ultra-transparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Reisfeld, R.

R. Reisfeld and M. Eyal, “Possible ways of relaxation of excited states of rare earth ions in amorphous media,” J. Phys. C7, 349–355 (1985).

Rolli, R.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterisation of nano-scale, Er3+ - doped, ultra-transparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Roselle, D.

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

Rowe, H.

A. B. Seddon, V. K. Tikhomirov, H. Rowe, and D. Furniss, “Temperature dependence of viscosity of Er3+-doped oxyfluoride glasses and nano-glass-ceramics,” J. Mater. Sci. 18, S145–S151 (2007).

Samson, B. N.

Sanghera, J. S.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient ouput at 4.5 μm,” IEEE Photon. Technol. Lett. 20(2), 123–125 (2008).
[CrossRef]

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium-lanthanum-sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
[CrossRef] [PubMed]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[CrossRef]

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

V. Q. Nguyen, J. S. Sanghera, J. A. Freitas, I. D. Aggarwal, and I. K. Lloyd, “Structural investigation of chalcogenide and chalcohalide glasses using Raman spectroscopy,” J. Non-Cryst. Solids 248(2-3), 103–114 (1999).
[CrossRef]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[CrossRef]

Savage, J. A.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibers,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[CrossRef]

Schweizer, T.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission and ion-ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 16(2), 308–316 (1999).
[CrossRef]

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulfide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

D. J. Brady and T. Schweizer, “Minimum loss predictions and measurements in gallium lanthanum sulfide based glasses and fibers,” J. Non-Cryst. Solids 242, 92–98 (1998).
[CrossRef]

T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium-doped gallium lanthanum sulfide fibers for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
[CrossRef] [PubMed]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
[CrossRef] [PubMed]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

Seddon, A. B.

A. B. Seddon, V. K. Tikhomirov, H. Rowe, and D. Furniss, “Temperature dependence of viscosity of Er3+-doped oxyfluoride glasses and nano-glass-ceramics,” J. Mater. Sci. 18, S145–S151 (2007).

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibers,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[CrossRef]

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, and A. B. Seddon, “Analysis of oxide content in gallium-lanthanum-sulfide (GLS) glasses by infrared absorption spectroscopy,” Phys. Chem. Glasses 44(4), 267–271 (2003).

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterisation of nano-scale, Er3+ - doped, ultra-transparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

R. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role in oxide content in the formation and crystallization of gallium lanthanum-sulfide glasses,” J. Mater. Res. 14(6), 2621–2627 (1999).
[CrossRef]

J. M. Parker, A. B. Seddon, and A. G. Clare, “Crystallization of ZrF4-BaF2-NaF-AlF3-LaF3 glasses,” Phys. Chem. Glasses 28(1), 4–10 (1987).

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, Opt. Quantum Electron. (submitted to).

Sen, S.

S. Sen and J. F. Stebbins, “Structural role of Nd3+ and Al3+ cations in SiO2 glass: a 29Si MAS-NMR spin-lattice relaxation, 27Al NMR and EPR study,” J. Non-Cryst. Solids 188(1-2), 54–62 (1995).
[CrossRef]

Shaposhnikov, R. M.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003).
[CrossRef]

Shaw, L. B.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient ouput at 4.5 μm,” IEEE Photon. Technol. Lett. 20(2), 123–125 (2008).
[CrossRef]

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium-lanthanum-sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
[CrossRef] [PubMed]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[CrossRef]

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

Shephard, J. D.

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, and A. B. Seddon, “Analysis of oxide content in gallium-lanthanum-sulfide (GLS) glasses by infrared absorption spectroscopy,” Phys. Chem. Glasses 44(4), 267–271 (2003).

Shin, Y. B.

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[CrossRef]

Shiryaev, V. S.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

Simdyankin, S. I.

T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence for formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
[CrossRef]

Sivco, D. L.

Skipachev, I. V.

E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003).
[CrossRef]

Smektala, F.

F. Prudenzano, L. Mescia, L. A. Alligretti, M. de Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Desig of ER3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[CrossRef]

Smol’nikov, I. V.

E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003).
[CrossRef]

Snopatin, G. E.

E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003).
[CrossRef]

Sójka, L.

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, Opt. Quantum Electron. (submitted to).

Stebbins, J. F.

S. Sen and J. F. Stebbins, “Structural role of Nd3+ and Al3+ cations in SiO2 glass: a 29Si MAS-NMR spin-lattice relaxation, 27Al NMR and EPR study,” J. Non-Cryst. Solids 188(1-2), 54–62 (1995).
[CrossRef]

Su, L.

T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence for formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
[CrossRef]

Suchkov, A. I.

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

Sujecki, S.

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, Opt. Quantum Electron. (submitted to).

Talley, D.

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

Tanaka, K.

H. Harada and K. Tanaka, “Photoluminescence from Pr3+doped chalcogenide glasses excited by bandgap light,” J. Non-Cryst. Solids 246(3), 189–196 (1999).
[CrossRef]

Tang, Z.

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, Opt. Quantum Electron. (submitted to).

Thielen, P. A.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[CrossRef]

Tikhomirov, V. K.

A. B. Seddon, V. K. Tikhomirov, H. Rowe, and D. Furniss, “Temperature dependence of viscosity of Er3+-doped oxyfluoride glasses and nano-glass-ceramics,” J. Mater. Sci. 18, S145–S151 (2007).

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibers,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterisation of nano-scale, Er3+ - doped, ultra-transparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Troles, J.

F. Prudenzano, L. Mescia, L. A. Alligretti, M. de Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Desig of ER3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[CrossRef]

Turnbull, D. A.

S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by the broadband Urbach edge absorption,” J. Non-Cryst. Solids 266–269, 876–883 (2000).
[CrossRef]

Wang, Y.

Weber, M. J.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare earth ions in oxide glasses,” Phys. Rev. B 16(1), 10–20 (1977).
[CrossRef]

Wyatt, R.

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis in neodymium-doped silica based optical fiber,” Mater. Lett. 8(6-7), 204–208 (1989).
[CrossRef]

Zavadil, J.

D. Ležal, M. Poulain, and J. Zavadil, “Sulfide glasses doped with rare earth elements,” Ceramics-Silikáty 45(3), 105–110 (2001).

Zhang, H. L.

Am. Mineral.

H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” Am. Mineral. 50, 132–147 (1965).

Appl. Phys. Lett.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterisation of nano-scale, Er3+ - doped, ultra-transparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

C. R. Chim.

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[CrossRef]

Ceramics-Silikáty

D. Ležal, M. Poulain, and J. Zavadil, “Sulfide glasses doped with rare earth elements,” Ceramics-Silikáty 45(3), 105–110 (2001).

Czech. J. Phys.

A. Hrubý, “Evaluation of glass-forming tendency by means of DTA,” Czech. J. Phys. 22(11), 1187–1193 (1972).
[CrossRef]

Electron. Lett.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

Fiber Integr. Opt.

J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[CrossRef]

IEEE J. Quantum Electron.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient ouput at 4.5 μm,” IEEE Photon. Technol. Lett. 20(2), 123–125 (2008).
[CrossRef]

Infrared Phys. Technol.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulfide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibers,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[CrossRef]

Inorg. Mater.

E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003).
[CrossRef]

M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007).
[CrossRef]

J. Am. Ceram. Soc.

A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88(9), 2451–2455 (2005).
[CrossRef]

J. Chem. Phys.

G. S. Ofelt, “Intensity of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

J. Lightwave Technol.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[CrossRef]

J. Mater. Res.

R. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role in oxide content in the formation and crystallization of gallium lanthanum-sulfide glasses,” J. Mater. Res. 14(6), 2621–2627 (1999).
[CrossRef]

J. Mater. Sci.

A. B. Seddon, V. K. Tikhomirov, H. Rowe, and D. Furniss, “Temperature dependence of viscosity of Er3+-doped oxyfluoride glasses and nano-glass-ceramics,” J. Mater. Sci. 18, S145–S151 (2007).

J. Non-Cryst. Solids

S. Sen and J. F. Stebbins, “Structural role of Nd3+ and Al3+ cations in SiO2 glass: a 29Si MAS-NMR spin-lattice relaxation, 27Al NMR and EPR study,” J. Non-Cryst. Solids 188(1-2), 54–62 (1995).
[CrossRef]

F. Prudenzano, L. Mescia, L. A. Alligretti, M. de Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Desig of ER3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[CrossRef]

B. G. Aitken and C. W. Ponader, “Physical properties and Raman spectroscopy of GeAs sulfide glasses,” J. Non-Cryst. Solids 256-257, 143–148 (1999).
[CrossRef]

V. Q. Nguyen, J. S. Sanghera, J. A. Freitas, I. D. Aggarwal, and I. K. Lloyd, “Structural investigation of chalcogenide and chalcohalide glasses using Raman spectroscopy,” J. Non-Cryst. Solids 248(2-3), 103–114 (1999).
[CrossRef]

J. Heo, “Emission and local structure of rare-earth ions in chalcogenide glasses,” J. Non-Cryst. Solids 353(13-15), 1358–1363 (2007).
[CrossRef]

S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by the broadband Urbach edge absorption,” J. Non-Cryst. Solids 266–269, 876–883 (2000).
[CrossRef]

H. Harada and K. Tanaka, “Photoluminescence from Pr3+doped chalcogenide glasses excited by bandgap light,” J. Non-Cryst. Solids 246(3), 189–196 (1999).
[CrossRef]

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995).
[CrossRef]

D. S. Ma, P. S. Danielson, and C. T. Moynihan, “Bulk and impurity infrared-absorption in 0.5As2Se3-0.5GeSe2 glass,” J. Non-Cryst. Solids 37(2), 181–190 (1980).
[CrossRef]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999).
[CrossRef]

D. J. Brady and T. Schweizer, “Minimum loss predictions and measurements in gallium lanthanum sulfide based glasses and fibers,” J. Non-Cryst. Solids 242, 92–98 (1998).
[CrossRef]

R. S. Quimby and B. G. Aitken, “Multiphonon gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320(1-3), 100–112 (2003).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys.

R. Reisfeld and M. Eyal, “Possible ways of relaxation of excited states of rare earth ions in amorphous media,” J. Phys. C7, 349–355 (1985).

Mater. Lett.

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis in neodymium-doped silica based optical fiber,” Mater. Lett. 8(6-7), 204–208 (1989).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008).
[CrossRef]

Opt. Quantum Electron.

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, Opt. Quantum Electron. (submitted to).

Phys. Chem. Glasses

J. M. Parker, A. B. Seddon, and A. G. Clare, “Crystallization of ZrF4-BaF2-NaF-AlF3-LaF3 glasses,” Phys. Chem. Glasses 28(1), 4–10 (1987).

J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, and A. B. Seddon, “Analysis of oxide content in gallium-lanthanum-sulfide (GLS) glasses by infrared absorption spectroscopy,” Phys. Chem. Glasses 44(4), 267–271 (2003).

Phys. Rev.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Phys. Rev. B

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare earth ions in oxide glasses,” Phys. Rev. B 16(1), 10–20 (1977).
[CrossRef]

T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence for formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
[CrossRef]

Other

C. N. Banwell, Fundamentals of molecular spectroscopy (McGraw-Hill, London, 1966).

M. Ebrahim-Zadeh, I. T. Sorokina eds. Mid-infrared coherent sources and applications, NATO Science for Peace and Security, Series B: Physics and Biophysics. (Springer Verlag, The Netherlands, 2008).

R. Reisfeld, and C. K. Jorgensen, Lasers and excited states of rare earths. Inorganic Chemistry Concepts 1. (Springer-Verlag, New York, 1977).

P. W. France ed. Optical fiber lasers and amplifiers (Blackie, London, 1991).

D. Furniss and A.B. Seddon, unpublished work.

D. Furniss, and A. B. Seddon, “Thermal analysis of inorganic compound glasses and glass-ceramics”, P. Gabbott ed. Principles and applications of thermal analysis (Blackwell, Oxford, 2008).

Z. Tang, D. Furniss, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses”, presented at the Int. Symp. Non-Oxide and New Optical Glasses (ISNOG) 2010 and submitted to J Non-Cryst Solids.

T. Schweizer, “Rare-earth-doped sulfide glasses for mid-infrared fiber lasers”, PhD thesis, ORC, University of Southampton,UK, and Inst. Für Laser Physic, Universität Hamburg, Germany (1998).

B. Cole, J. Sanghera, B. Shaw, B. Harbison, and I. D. Aggarwal, “Low phonon energy glass and fiber doped with rare earth”, US Patent 6,128,429 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

[Tx-Tg] as a function of oxide content of Ga2S3-La2S3-La2O3 glasses; Tg is the extrapolated onset glass transition and Tx the extrapolated onset temperature of crystallization (both measured ( ± 0.5°C) using differential thermal analysis). For all glasses: n = 0.70 (where n = atomic ratio = (Ga/(Ga + La)). (Compositions with ≥0.49 wt%[O] had 0.1 & 1.07 wt%[O] contamination in the supplied Ga2S3 & La2S3, respectively. Compositions with ≤ 0.38wt%[O] had 0.12 & 0.14 wt%[O] contamination in the Ga2S3 & La2S3, respectively.) Figure shows a maximum in the [Tx-Tg] gap at 0.49 wt%[O] and that the [Tx-Tg] gap increases > 2.12 wt%[O]. For ≤ 0.13 wt%[O] there was no glass formation. (Figure adapted from [13,14].)

Fig. 2
Fig. 2

Infrared absorption spectra for the Ga2S3-La2S3-La2O3 series of glass compositions with ≥0.49wt%[O], see Fig. 1. (Reproduced with kind permission from [14].)

Fig. 3
Fig. 3

(Adapted from [23]. The allowed vibrational energy levels and some transitions between them for a diatomic molecule undergoing anharmonic oscillations.) It is suggested that impurity species such as [As-O], coordinating RE-ions doped into chalcogenide glass hosts, accept energy non-radiatively from the excited RE-ions and in turn undergo vibrational excitation.

Fig. 9
Fig. 9

Attenuation versus wavelength plot for Teflon-clad As40S55Se5 glass fiber fabricated using: (A) as-received chemicals and (B) purified chemicals. Also shown are the Urbach and multiphonon absorption edges and the weak absorption tail (WAT) and the calculated Rayleigh scattering loss. (Reproduced with kind permission from [ 40 ].)

Fig. 4
Fig. 4

1G43H5 emission spectra of Pr3+-doped GeAs sulfide glasses with (open circles) and without (solid diamonds) GaIII co-dopant. (Reproduced with permission from [ 35 ].)

Fig. 5
Fig. 5

Powder X-ray diffraction patterns of: a – g: 0, 500, 800, 1000, 1500, 2000 and 3000 ppmw Dy3+ doped Ge16.5Ga3As16Se64.5. The XRD patterns indicate that the as-prepared glasses are amorphous. h: For comparison, a 1000 ppm Dy3+ doped Ge16.5Ga10As9Se64.5 glass showing the onset of bulk crystallization to Ga2Se3 [19].

Fig. 6
Fig. 6

Near- and mid-infrared absorption spectra of as-prepared Dy3+-doped Ge16.5 Ga3As16Se64.5 glasses. The 1500 ppmw, 2000 ppmw and 3000 ppmw doped glasses exhibit scattering in the near- to mid-infrared region.

Fig. 7
Fig. 7

As-prepared 800 ppmw Dy3+-doped Ge16.5 Ga3As16Se64.5 glass exhibits a smooth absorption band at 1.3 μm due to the (6H15/2→ (6H9/2, 6F11/2) absorption of the Dy3+ indicating that the local environment of the Dy3+ ions is amorphous. At the higher doping level of 1500 ppmw Dy3+, the 1.3 μm absorption band shows structuring, indicative of a more ordered local environment and indicating that the glass has undergone unwanted crystallization during the melt-quenching procedure to make the glass.

Fig. 8
Fig. 8

Viscosity/temperature curves of: (a) 800 ppmw Dy3+ doped Ga10 glass (Ge16.5Ga10As9Se64) showing the smooth fall in viscosity with temperature is arrested at 105.8 Pas due to unwanted crystal growth and (b) in contrast, the viscosity of the 800 ppmw Dy3+ doped Ga3 glass (Ge16.5Ga3As16Se64) falls smoothly over the temperature range studied.

Tables (1)

Tables Icon

Table 1 Collation of the mid-IR emission of RE-ion doped bulk chalcogenide glasses, and fiber, at ≥ 3 μm wavelength. Glasses are in blocks according to their ionic or covalent behavior and the host-glass chalcogen. References are in date-order in each block. Key: - means data are not available.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 / τ =  W tot   =  W r +  W nr
W tot   =  W r +  W mp
W mp ( T )   = β [ 1 + n ( T ) ] p   e α Δ E
W tot   =  W r +  W mp + W imp
W nr =   W mp + W imp

Metrics