Abstract

We report the first demonstration of optical phase conjugation (OPC) transmission of phase encoded and wavelength-division multiplexed (WDM) signals by the Kerr effect in a planar structured waveguide. The phase conjugated electric field of the signal is produced by four wave mixing pumped by a CW laser during co-propagating with the signal in a highly nonlinear waveguide fabricated in As2S3 glass. Experiments demonstrate the capability of the device to perform dispersion-free transmission through up to 225 km of standard single mode fiber for a 3 × 40 Gb/s WDM signal, with its channels encoded as return-to-zero differential phase shift keying and spaced either 100 or 200 GHz apart. This work represents an important milestone towards demonstrating advanced signal processing of high-speed and broadband optical signals in compact planar waveguides, with the potential for monolithic optical integration.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17252 .
    [CrossRef] [PubMed]
  2. J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
    [CrossRef]
  3. M. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
    [CrossRef]
  4. I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36(21), 1788–1790 (2000).
    [CrossRef]
  5. H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:.
    [CrossRef]
  6. X. Wu, W.-R. Peng, V. Arbab, J. Wang, and A. Willner, “Tunable optical wavelength conversion of OFDM signal using a periodically-poled lithium niobate waveguide,” Opt. Express 17(11), 9177–9182 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-11-9177 .
    [CrossRef] [PubMed]
  7. H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
    [CrossRef]
  8. B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
    [CrossRef]
  9. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16735 .
    [CrossRef] [PubMed]
  10. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3514 .
    [CrossRef] [PubMed]
  11. M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
    [CrossRef]
  12. S. Watanabe, “Optical signal processing using nonlinear fibers,” J. Opt. Fiber. Commun. Rep. 3(1), 1–24 (2005).
    [CrossRef]
  13. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006).
    [CrossRef]
  14. H. Hu, R. Nouroozi, R. Ludwig, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide,” Opt. Lett. 35(17), 2867–2869 (2010).
    [CrossRef] [PubMed]
  15. P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18119 .
    [CrossRef] [PubMed]
  16. J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s conventional and carrier-suppressed RZ signals transmission over 200 km standard fiber by using mid-span optical phase conjugation (invited, OECC Awarded),” IEICE Trans. on Comm , E 86-B, 1555–1561 (2003).
  17. S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007).
    [CrossRef] [PubMed]
  18. Z. Pan, C. Yub, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
    [CrossRef]
  19. G. Wellbrock and T. J. Xia, “The road to 100g deployment [Commentary],” IEEE Commun. Mag. 48(3), S14–S18 (2010).
    [CrossRef]
  20. S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, and S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. 20(23), 1971–1973 (2008).
    [CrossRef]
  21. J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-439 .
    [CrossRef] [PubMed]
  22. M. R. Lamont, C.M de Sterke, and B.J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9458 .
    [CrossRef] [PubMed]
  23. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 .
    [CrossRef] [PubMed]
  24. D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
    [CrossRef]
  25. M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, “Low-loss and low-dispersion-slope highly nonlinear fibers,” J. Lightwave Technol. 23(11), 3615–3624 (2005).
    [CrossRef]
  26. Y. K. Lizé, X. Wu, M. Nazarathy, Y. Atzmon, L. Christen, S. Nuccio, M. Faucher, N. Godbout, and A. E. Willner, “Chromatic dispersion tolerance in optimized NRZ-, RZ- and CSRZ-DPSK demodulation,” Opt. Express 16(6), 4228–4236 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4228 .
    [CrossRef] [PubMed]
  27. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
    [CrossRef]
  28. X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18866 .
    [CrossRef] [PubMed]

2010 (10)

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:.
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

Z. Pan, C. Yub, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

G. Wellbrock and T. J. Xia, “The road to 100g deployment [Commentary],” IEEE Commun. Mag. 48(3), S14–S18 (2010).
[CrossRef]

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-439 .
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17252 .
[CrossRef] [PubMed]

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18119 .
[CrossRef] [PubMed]

H. Hu, R. Nouroozi, R. Ludwig, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide,” Opt. Lett. 35(17), 2867–2869 (2010).
[CrossRef] [PubMed]

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18866 .
[CrossRef] [PubMed]

2009 (3)

2008 (3)

2007 (4)

2006 (1)

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006).
[CrossRef]

2005 (2)

2003 (2)

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s conventional and carrier-suppressed RZ signals transmission over 200 km standard fiber by using mid-span optical phase conjugation (invited, OECC Awarded),” IEICE Trans. on Comm , E 86-B, 1555–1561 (2003).

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

2000 (1)

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36(21), 1788–1790 (2000).
[CrossRef]

1999 (1)

M. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Alic, N.

J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-439 .
[CrossRef] [PubMed]

S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, and S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. 20(23), 1971–1973 (2008).
[CrossRef]

Aparicio, J. M.

Arbab, V.

Asobe, M.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

Atzmon, Y.

Ayotte, S.

Balch, K.

Bergman, K.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Biberman, A.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Brener, I.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36(21), 1788–1790 (2000).
[CrossRef]

M. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Bulla, D.

Bulla, D. A.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 .
[CrossRef] [PubMed]

Bulla, D. A. P.

Chaban, E. E.

M. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Chavez Boggio, J. M.

J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-439 .
[CrossRef] [PubMed]

S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, and S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. 20(23), 1971–1973 (2008).
[CrossRef]

Choi, D.-Y.

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17252 .
[CrossRef] [PubMed]

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18866 .
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3514 .
[CrossRef] [PubMed]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 .
[CrossRef] [PubMed]

Chou, M.

M. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Christen, L.

Christman, S. B.

M. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Chujo, W.

J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s conventional and carrier-suppressed RZ signals transmission over 200 km standard fiber by using mid-span optical phase conjugation (invited, OECC Awarded),” IEICE Trans. on Comm , E 86-B, 1555–1561 (2003).

Cohen, O.

Cristiani, I.

de Sterke, C.M

de Waardt, H.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006).
[CrossRef]

Degiorgio, V.

Eggleton, B. J.

Eggleton, B.J.

Faucher, M.

Fejer, M. M.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18119 .
[CrossRef] [PubMed]

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36(21), 1788–1790 (2000).
[CrossRef]

M. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Foster, M. A.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Furukawa, H.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Gaeta, A. L.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Gai, X.

Galili, M.

Gholami, F.

Godbout, N.

Harel, R.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36(21), 1788–1790 (2000).
[CrossRef]

Hiroishi, J.

Hu, H.

Huettl, B.

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:.
[CrossRef]

Inoue, J.

J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s conventional and carrier-suppressed RZ signals transmission over 200 km standard fiber by using mid-span optical phase conjugation (invited, OECC Awarded),” IEICE Trans. on Comm , E 86-B, 1555–1561 (2003).

Jansen, S. L.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006).
[CrossRef]

Kawaguchi, H.

J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s conventional and carrier-suppressed RZ signals transmission over 200 km standard fiber by using mid-span optical phase conjugation (invited, OECC Awarded),” IEICE Trans. on Comm , E 86-B, 1555–1561 (2003).

Khoe, G.-D.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006).
[CrossRef]

Krummrich, P. M.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006).
[CrossRef]

Kurz, J. R.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36(21), 1788–1790 (2000).
[CrossRef]

Lamont, M. R.

Lamont, M. R. E.

Langrock, C.

Lee, B. G.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Lipson, M.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Lizé, Y. K.

Luan, F.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3514 .
[CrossRef] [PubMed]

Ludwig, R.

H. Hu, R. Nouroozi, R. Ludwig, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide,” Opt. Lett. 35(17), 2867–2869 (2010).
[CrossRef] [PubMed]

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:.
[CrossRef]

Luther-Davies, B.

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17252 .
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18866 .
[CrossRef] [PubMed]

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3514 .
[CrossRef] [PubMed]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 .
[CrossRef] [PubMed]

Madden, S.

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18866 .
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3514 .
[CrossRef] [PubMed]

Madden, S. J.

Marazzi, L.

Martinelli, M.

Mathlouthi, W.

Mikkelsen, B.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36(21), 1788–1790 (2000).
[CrossRef]

Minzioni, P.

Miyazaki, T.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Miyazawa, H.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

Morioka, T.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Moro, S.

J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-439 .
[CrossRef] [PubMed]

S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, and S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. 20(23), 1971–1973 (2008).
[CrossRef]

Myslivets, E.

S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, and S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. 20(23), 1971–1973 (2008).
[CrossRef]

Nazarathy, M.

Nirmalathas, A.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Nouroozi, R.

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:.
[CrossRef]

H. Hu, R. Nouroozi, R. Ludwig, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide,” Opt. Lett. 35(17), 2867–2869 (2010).
[CrossRef] [PubMed]

Nuccio, S.

Ohara, T.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

Oxenløwe, L. K.

Palushani, E.

Pan, Z.

Z. Pan, C. Yub, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Paniccia, M.

Paniccia, M. J.

Parameswaran, K.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36(21), 1788–1790 (2000).
[CrossRef]

Pelusi, M. D.

Peng, W.-R.

Pusino, V.

Radic, S.

J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-439 .
[CrossRef] [PubMed]

S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, and S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. 20(23), 1971–1973 (2008).
[CrossRef]

Raybon, G.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36(21), 1788–1790 (2000).
[CrossRef]

Rode, A.

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

Rode, A. V.

Rong, H.

Sato, K.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

Schmidt-Langhorst, C.

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:.
[CrossRef]

H. Hu, R. Nouroozi, R. Ludwig, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide,” Opt. Lett. 35(17), 2867–2869 (2010).
[CrossRef] [PubMed]

Schröder, J.

Schubert, C.

H. Hu, R. Nouroozi, R. Ludwig, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide,” Opt. Lett. 35(17), 2867–2869 (2010).
[CrossRef] [PubMed]

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:.
[CrossRef]

Shinada, S.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Sohler, W.

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:.
[CrossRef]

H. Hu, R. Nouroozi, R. Ludwig, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide,” Opt. Lett. 35(17), 2867–2869 (2010).
[CrossRef] [PubMed]

Sotobayashi, H.

J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s conventional and carrier-suppressed RZ signals transmission over 200 km standard fiber by using mid-span optical phase conjugation (invited, OECC Awarded),” IEICE Trans. on Comm , E 86-B, 1555–1561 (2003).

Spälter, S.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006).
[CrossRef]

Suche, H.

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:.
[CrossRef]

H. Hu, R. Nouroozi, R. Ludwig, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide,” Opt. Lett. 35(17), 2867–2869 (2010).
[CrossRef] [PubMed]

Sugizaki, R.

Ta’eed, V. G.

Tadakuma, M.

Tadanaga, O.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

Takada, A.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

Takahashi, M.

Takara, H.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

Taniguchi, Y.

Tsuboya, H.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Turner-Foster, A. C.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

van den Borne, D.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006).
[CrossRef]

Vo, T. D.

Wada, N.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Wang, J.

Wang, R.

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

Watanabe, S.

S. Watanabe, “Optical signal processing using nonlinear fibers,” J. Opt. Fiber. Commun. Rep. 3(1), 1–24 (2005).
[CrossRef]

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Wellbrock, G.

G. Wellbrock and T. J. Xia, “The road to 100g deployment [Commentary],” IEEE Commun. Mag. 48(3), S14–S18 (2010).
[CrossRef]

Willner, A.

Willner, A. E.

Windmiller, J. R.

S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, and S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. 20(23), 1971–1973 (2008).
[CrossRef]

Wu, X.

Xia, T. J.

G. Wellbrock and T. J. Xia, “The road to 100g deployment [Commentary],” IEEE Commun. Mag. 48(3), S14–S18 (2010).
[CrossRef]

Xu, J.

Xu, S.

Yagi, T.

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Yamawaku, J.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

Yub, C.

Z. Pan, C. Yub, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Zlatanovic, S.

Appl. Phys. B (1)

H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:.
[CrossRef]

Electron. Lett. (3)

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36(21), 1788–1790 (2000).
[CrossRef]

IEEE Commun. Mag. (1)

G. Wellbrock and T. J. Xia, “The road to 100g deployment [Commentary],” IEEE Commun. Mag. 48(3), S14–S18 (2010).
[CrossRef]

IEEE J. Sel. Top. Quant. (1)

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

M. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, and S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. 20(23), 1971–1973 (2008).
[CrossRef]

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

IEICE Trans. on Comm (1)

J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s conventional and carrier-suppressed RZ signals transmission over 200 km standard fiber by using mid-span optical phase conjugation (invited, OECC Awarded),” IEICE Trans. on Comm , E 86-B, 1555–1561 (2003).

J. Lightwave Technol. (1)

J. Opt. Fiber. Commun. Rep. (1)

S. Watanabe, “Optical signal processing using nonlinear fibers,” J. Opt. Fiber. Commun. Rep. 3(1), 1–24 (2005).
[CrossRef]

Opt. Express (10)

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 .
[CrossRef] [PubMed]

Y. K. Lizé, X. Wu, M. Nazarathy, Y. Atzmon, L. Christen, S. Nuccio, M. Faucher, N. Godbout, and A. E. Willner, “Chromatic dispersion tolerance in optimized NRZ-, RZ- and CSRZ-DPSK demodulation,” Opt. Express 16(6), 4228–4236 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4228 .
[CrossRef] [PubMed]

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16735 .
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3514 .
[CrossRef] [PubMed]

X. Wu, W.-R. Peng, V. Arbab, J. Wang, and A. Willner, “Tunable optical wavelength conversion of OFDM signal using a periodically-poled lithium niobate waveguide,” Opt. Express 17(11), 9177–9182 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-11-9177 .
[CrossRef] [PubMed]

J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-439 .
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17252 .
[CrossRef] [PubMed]

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18119 .
[CrossRef] [PubMed]

M. R. Lamont, C.M de Sterke, and B.J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9458 .
[CrossRef] [PubMed]

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18866 .
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

Z. Pan, C. Yub, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of optical phase conjugation (OPC) of the signal at a point along an optical fiber transmission link for the purpose in this case of cancelling the accumulated dispersion of both links. (b) χ(3) based FWM pumped by a CW laser for generating the signal phase conjugate at the wavelength, λi . (c) Images of (top) waveguide coupled to lensed fibers and (below) cross-section.

Fig. 2
Fig. 2

Experimental set-ups for the (a) 3 × 40 Gb/s RZ DPSK signal transmitter (Tx) with either 100 or 200 GHz channel spacing, (b) OPC of the input WDM signal in a As2S3 waveguide via FWM pumped by a co-propagating CW laser at different wavelength, and (c) 225 km long link of SSMF incorporating the OPC circuit from (b) at the 105 km point.

Fig. 3
Fig. 3

Optical spectra of (a) 3 × 40 Gb/s RZ DPSK WDM signal with 200 GHz channel spacing at input and output of the 225 km long SSMF link (including OPC) for center wavelengths of 1560.61 nm, and 1533.39 nm, respectively, and a resolution bandwidth (RBW) of 0.07 nm in both cases, and (b) input and output of As2S3 waveguide at the 105 km point, measured with RBW = 0.2 nm and reference power level arbitrary set to offset traces for clarity.

Fig. 4
Fig. 4

Fiber transmission performance of 3 × 40 Gb/s RZ-DPSK WDM signal with 200 GHz channel spacing. Eye diagrams of (a) single channel at input and output of 2 km long SSMF (without DPSK demodulation), (b) WDM signal channels at the input and output of the 225 km long link with OPC and DPSK demodulation. (c) Bit error rate (BER) for each WDM signal channel compared to their “back to back” (B2B) case of both 225 km fiber link and OPC excluded.

Fig. 5
Fig. 5

OPC transmission of 3 × 40 Gb/s RZ DPSK signal with 100 GHz channel spacing in a 162 km link of SSMF (a) Experimental set-up, and signal optical spectrum at (left) transmitter output, and (right) input to DPSK demodulator in the Rx (RBW = 0.07 nm). (b) Optical spectrum at output of As2S3 waveguide at 75 km point of the link for performing OPC. (RBW = 0.2 nm, and arbitrary reference power level). (c) Signal eye diagrams, and Ch. 2 BER performance for OPC only, and OPC plus 162 km link transmission, compared to B2B.

Metrics