Abstract

The aim of this paper is to present an overview of the recent achievements of our group in the fabrication and optical characterizations of As2S3 microstructured optical fibers (MOFs). Firstly, we study the synthesis of high purity arsenic sulfide glasses. Then we describe the use of a versatile process using mechanical drilling for the preparation of preforms and then the drawing of MOFs including suspended core fibers. Low losses MOFs are obtained by this way, with background level of losses reaching less than 0.5 dB/m. Optical characterizations of these fibers are then reported, especially dispersion measurements. The feasibility of all-optical regeneration based on a Mamyshev regenerator is investigated, and the generation of a broadband spectrum between 1 µm and 2.6 µm by femto second pumping around 1.5 µm is presented.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  2. G. P. Agrawal, Application of nonlinear fiber optics”, Academic Press, Boston (2001).
  3. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  4. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  5. F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
    [CrossRef]
  6. F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
    [CrossRef]
  7. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
    [CrossRef]
  8. F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
    [CrossRef] [PubMed]
  9. F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 58803 (2007).
  10. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
    [CrossRef]
  11. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Non silica Glasses for Holey Fibers,” J. Lightwave Technol. 23(6), 2046–2053 (2005).
  12. R. Frerichs, “New optical glasses with good transparency in the infrared,” J. Opt. Soc. Am. 43(12), 1153–1157 (1953).
    [CrossRef]
  13. J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47(1), 101–115 (1982).
    [CrossRef]
  14. S. Shibata, T. Manabe, and M. Horiguchi, “Preparation of Ge-S Glass Fibers with Reduced OH, SH Content,” Jpn. J. Appl. Phys. 20(1), 13–16 (1981).
    [CrossRef]
  15. C. T. Moynihan, P. B. Macedo, N. S. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As-Se glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
    [CrossRef]
  16. S. Shibata, Y. Terunuma, and T. Manabe, “Sulfide glass fibers for infrared transmission,” Mater. Res. Bull. 16(6), 703–714 (1981).
    [CrossRef]
  17. G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Fiber waveguides from high purity chalcogenide glass,” Russ. High Purity Substances J. 1, 7–36 (1991).
  18. D. L. Wood and J. Tauc, “Weak absorption tails in amorphous semiconductors,” Phys. Rev. B 5(8), 3144–3151 (1972).
    [CrossRef]
  19. M. F. Churbanov, “High purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
    [CrossRef]
  20. G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As-S glass fibres,” J. of Non-Cryst. Solids 256&257, 318–22 (1999).
  21. M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron.Adv. Mater. 3, 341–349 (2001).
  22. G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mate. Rapid Commun. 3(7), 669–671 (2009).
  23. M. C. J. Large, L. Poladian, G. Barton, and M. Eijkelenborg, “Microstructured polymer optical fibers”, Springer (2008).
  24. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
    [CrossRef] [PubMed]
  25. G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach–Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
    [CrossRef]
  26. V. G. Borisevich, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Extension coefficient of SH groups in vitreous arsenic sulphide,” Russ. High Purity Substances J.. 4, 759–762 (1990).
  27. L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
    [CrossRef]
  28. J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
    [CrossRef]
  29. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
    [CrossRef] [PubMed]
  30. J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
    [CrossRef]
  31. M. Szpulak and S. Février, “Chalcogenide As2S3 Suspended Core Fiber for Mid-IR Wavelength Conversion Based on Degenerate Four-Wave Mixing,” IEEE Photon. Technol. Lett. 21(13), 884–886 (2009).
    [CrossRef]
  32. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” Proc. European Conference on Optical Communication, ECOC 98, 475–476 (1998).
  33. L. Fu, M. Rochette, V. Ta’eed, D. Moss, and B. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
    [CrossRef] [PubMed]
  34. L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
    [CrossRef] [PubMed]
  35. C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
    [CrossRef]
  36. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
    [CrossRef] [PubMed]

2010 (1)

2009 (6)

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

M. Szpulak and S. Février, “Chalcogenide As2S3 Suspended Core Fiber for Mid-IR Wavelength Conversion Based on Degenerate Four-Wave Mixing,” IEEE Photon. Technol. Lett. 21(13), 884–886 (2009).
[CrossRef]

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mate. Rapid Commun. 3(7), 669–671 (2009).

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
[CrossRef]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

2008 (4)

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[CrossRef]

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

2007 (2)

L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
[CrossRef] [PubMed]

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 58803 (2007).

2005 (2)

2003 (2)

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

2001 (2)

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach–Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
[CrossRef]

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron.Adv. Mater. 3, 341–349 (2001).

2000 (2)

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

1999 (1)

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As-S glass fibres,” J. of Non-Cryst. Solids 256&257, 318–22 (1999).

1998 (1)

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

1996 (1)

1995 (1)

M. F. Churbanov, “High purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[CrossRef]

1991 (1)

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Fiber waveguides from high purity chalcogenide glass,” Russ. High Purity Substances J. 1, 7–36 (1991).

1990 (1)

V. G. Borisevich, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Extension coefficient of SH groups in vitreous arsenic sulphide,” Russ. High Purity Substances J.. 4, 759–762 (1990).

1982 (1)

J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47(1), 101–115 (1982).
[CrossRef]

1981 (2)

S. Shibata, T. Manabe, and M. Horiguchi, “Preparation of Ge-S Glass Fibers with Reduced OH, SH Content,” Jpn. J. Appl. Phys. 20(1), 13–16 (1981).
[CrossRef]

S. Shibata, Y. Terunuma, and T. Manabe, “Sulfide glass fibers for infrared transmission,” Mater. Res. Bull. 16(6), 703–714 (1981).
[CrossRef]

1975 (1)

C. T. Moynihan, P. B. Macedo, N. S. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As-Se glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[CrossRef]

1972 (1)

D. L. Wood and J. Tauc, “Weak absorption tails in amorphous semiconductors,” Phys. Rev. B 5(8), 3144–3151 (1972).
[CrossRef]

1953 (1)

Adam, J. L.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

Adam, J.-L.

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

Atkin, D. M.

Barthélémy, A.

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
[CrossRef]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

Birks, T. A.

Borisevich, V. G.

V. G. Borisevich, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Extension coefficient of SH groups in vitreous arsenic sulphide,” Russ. High Purity Substances J.. 4, 759–762 (1990).

Boudebs, G.

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach–Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
[CrossRef]

Bramerie, L.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[CrossRef]

Brilland, L.

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
[CrossRef]

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 58803 (2007).

Broderick, N. G. R.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Chartier, T.

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
[CrossRef]

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[CrossRef]

Chaudhari, C.

Choi, D. Y.

Churbanov, M. F.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mate. Rapid Commun. 3(7), 669–671 (2009).

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron.Adv. Mater. 3, 341–349 (2001).

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As-S glass fibres,” J. of Non-Cryst. Solids 256&257, 318–22 (1999).

M. F. Churbanov, “High purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[CrossRef]

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Fiber waveguides from high purity chalcogenide glass,” Russ. High Purity Substances J. 1, 7–36 (1991).

V. G. Borisevich, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Extension coefficient of SH groups in vitreous arsenic sulphide,” Russ. High Purity Substances J.. 4, 759–762 (1990).

Couderc, V.

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
[CrossRef]

Coulombier, Q.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
[CrossRef]

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

De Angelis, C.

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

Desevedavy, F.

Désévédavy, F.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
[CrossRef]

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 58803 (2007).

Devyatykh, G. G.

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As-S glass fibres,” J. of Non-Cryst. Solids 256&257, 318–22 (1999).

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Fiber waveguides from high purity chalcogenide glass,” Russ. High Purity Substances J. 1, 7–36 (1991).

Dianov, E. M.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mate. Rapid Commun. 3(7), 669–671 (2009).

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As-S glass fibres,” J. of Non-Cryst. Solids 256&257, 318–22 (1999).

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Fiber waveguides from high purity chalcogenide glass,” Russ. High Purity Substances J. 1, 7–36 (1991).

Eggleton, B.

Eggleton, B. J.

El-Amraoui, M.

Fatome, J.

Feng, X.

Février, S.

M. Szpulak and S. Février, “Chalcogenide As2S3 Suspended Core Fiber for Mid-IR Wavelength Conversion Based on Degenerate Four-Wave Mixing,” IEEE Photon. Technol. Lett. 21(13), 884–886 (2009).
[CrossRef]

Finot, C.

Fortier, C.

Frerichs, R.

Fu, L.

Gadret, G.

Gay, M.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[CrossRef]

Gerasimenko, V. V.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mate. Rapid Commun. 3(7), 669–671 (2009).

Hewak, D. W.

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Non silica Glasses for Holey Fibers,” J. Lightwave Technol. 23(6), 2046–2053 (2005).

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Horiguchi, M.

S. Shibata, T. Manabe, and M. Horiguchi, “Preparation of Ge-S Glass Fibers with Reduced OH, SH Content,” Jpn. J. Appl. Phys. 20(1), 13–16 (1981).
[CrossRef]

Houizot, P.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
[CrossRef]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 58803 (2007).

Howard, R.

C. T. Moynihan, P. B. Macedo, N. S. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As-Se glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[CrossRef]

Jules, J. C.

Kibler, B.

Knight, J. C.

Lamont, M. R. E.

LeNeindre, L.

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

Liao, M.

Lucas, J.

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

Luther-Davies, B.

Macedo, P. B.

C. T. Moynihan, P. B. Macedo, N. S. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As-Se glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[CrossRef]

Madden, S.

Mairaj, A. K.

Maklad, N. S.

C. T. Moynihan, P. B. Macedo, N. S. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As-Se glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[CrossRef]

Manabe, T.

S. Shibata, T. Manabe, and M. Horiguchi, “Preparation of Ge-S Glass Fibers with Reduced OH, SH Content,” Jpn. J. Appl. Phys. 20(1), 13–16 (1981).
[CrossRef]

S. Shibata, Y. Terunuma, and T. Manabe, “Sulfide glass fibers for infrared transmission,” Mater. Res. Bull. 16(6), 703–714 (1981).
[CrossRef]

Messaad, K.

Messaddeq, Y.

Mohr, R.

C. T. Moynihan, P. B. Macedo, N. S. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As-Se glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[CrossRef]

Monro, T. M.

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Non silica Glasses for Holey Fibers,” J. Lightwave Technol. 23(6), 2046–2053 (2005).

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Moss, D.

Moynihan, C. T.

C. T. Moynihan, P. B. Macedo, N. S. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As-Se glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[CrossRef]

Mukasa, K.

Nguyen, T. N.

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
[CrossRef]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[CrossRef]

Nuyen, T. N.

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

Ohishi, Y.

Petropoulos, P.

Pitois, S.

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[CrossRef]

Plotnichenko, V. G.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mate. Rapid Commun. 3(7), 669–671 (2009).

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron.Adv. Mater. 3, 341–349 (2001).

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As-S glass fibres,” J. of Non-Cryst. Solids 256&257, 318–22 (1999).

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Fiber waveguides from high purity chalcogenide glass,” Russ. High Purity Substances J. 1, 7–36 (1991).

V. G. Borisevich, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Extension coefficient of SH groups in vitreous arsenic sulphide,” Russ. High Purity Substances J.. 4, 759–762 (1990).

Polacchini, C. F.

Provost, L. A.

Pushkin, A. A.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mate. Rapid Commun. 3(7), 669–671 (2009).

Qin, G.

Quémard, C.

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
[CrossRef]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

Renversez, G.

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
[CrossRef]

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

Richardson, D. J.

L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
[CrossRef] [PubMed]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Rochette, M.

Russell, P. St. J.

Sanchez, F.

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach–Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
[CrossRef]

Sanghera, J. S.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

Savage, J. A.

J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47(1), 101–115 (1982).
[CrossRef]

Scripachev, I. V.

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As-S glass fibres,” J. of Non-Cryst. Solids 256&257, 318–22 (1999).

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Fiber waveguides from high purity chalcogenide glass,” Russ. High Purity Substances J. 1, 7–36 (1991).

V. G. Borisevich, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Extension coefficient of SH groups in vitreous arsenic sulphide,” Russ. High Purity Substances J.. 4, 759–762 (1990).

Scripatchev, I. V.

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron.Adv. Mater. 3, 341–349 (2001).

Shaw, L. B.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

Shibata, S.

S. Shibata, T. Manabe, and M. Horiguchi, “Preparation of Ge-S Glass Fibers with Reduced OH, SH Content,” Jpn. J. Appl. Phys. 20(1), 13–16 (1981).
[CrossRef]

S. Shibata, Y. Terunuma, and T. Manabe, “Sulfide glass fibers for infrared transmission,” Mater. Res. Bull. 16(6), 703–714 (1981).
[CrossRef]

Shiryaev, V. S.

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron.Adv. Mater. 3, 341–349 (2001).

Simon, J. C.

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[CrossRef]

Skripatchev, I.

Smektala, F.

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 58803 (2007).

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach–Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
[CrossRef]

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
[CrossRef]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

Snopatin, G. E.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mate. Rapid Commun. 3(7), 669–671 (2009).

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron.Adv. Mater. 3, 341–349 (2001).

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As-S glass fibres,” J. of Non-Cryst. Solids 256&257, 318–22 (1999).

Suzuki, T.

Szpulak, M.

Ta’eed, V.

Tauc, J.

D. L. Wood and J. Tauc, “Weak absorption tails in amorphous semiconductors,” Phys. Rev. B 5(8), 3144–3151 (1972).
[CrossRef]

Terunuma, Y.

S. Shibata, Y. Terunuma, and T. Manabe, “Sulfide glass fibers for infrared transmission,” Mater. Res. Bull. 16(6), 703–714 (1981).
[CrossRef]

Traynor, N.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
[CrossRef]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 58803 (2007).

Troles, J.

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[CrossRef] [PubMed]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
[CrossRef]

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 58803 (2007).

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach–Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
[CrossRef]

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Wood, D. L.

D. L. Wood and J. Tauc, “Weak absorption tails in amorphous semiconductors,” Phys. Rev. B 5(8), 3144–3151 (1972).
[CrossRef]

Yan, X.

Appl. Opt. (1)

Electron. Lett. (1)

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Fiber Inter. Opt. (1)

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Szpulak and S. Février, “Chalcogenide As2S3 Suspended Core Fiber for Mid-IR Wavelength Conversion Based on Degenerate Four-Wave Mixing,” IEEE Photon. Technol. Lett. 21(13), 884–886 (2009).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008).
[CrossRef]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (5)

J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47(1), 101–115 (1982).
[CrossRef]

C. T. Moynihan, P. B. Macedo, N. S. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As-Se glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975).
[CrossRef]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
[CrossRef]

M. F. Churbanov, “High purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Optoelectron.Adv. Mater. (1)

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron.Adv. Mater. 3, 341–349 (2001).

Jpn. J. Appl. Phys. (1)

S. Shibata, T. Manabe, and M. Horiguchi, “Preparation of Ge-S Glass Fibers with Reduced OH, SH Content,” Jpn. J. Appl. Phys. 20(1), 13–16 (1981).
[CrossRef]

Mater. Res. Bull. (1)

S. Shibata, Y. Terunuma, and T. Manabe, “Sulfide glass fibers for infrared transmission,” Mater. Res. Bull. 16(6), 703–714 (1981).
[CrossRef]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach–Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
[CrossRef]

C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Optoelectron. Adv. Mate. Rapid Commun. (1)

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mate. Rapid Commun. 3(7), 669–671 (2009).

Phys. Rev. B (1)

D. L. Wood and J. Tauc, “Weak absorption tails in amorphous semiconductors,” Phys. Rev. B 5(8), 3144–3151 (1972).
[CrossRef]

Russ. High Purity Substances J. (1)

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Fiber waveguides from high purity chalcogenide glass,” Russ. High Purity Substances J. 1, 7–36 (1991).

Russ. High Purity Substances J.. (1)

V. G. Borisevich, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Extension coefficient of SH groups in vitreous arsenic sulphide,” Russ. High Purity Substances J.. 4, 759–762 (1990).

Science (1)

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

SPIE (1)

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 58803 (2007).

Other (4)

G. P. Agrawal, Application of nonlinear fiber optics”, Academic Press, Boston (2001).

M. C. J. Large, L. Poladian, G. Barton, and M. Eijkelenborg, “Microstructured polymer optical fibers”, Springer (2008).

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As-S glass fibres,” J. of Non-Cryst. Solids 256&257, 318–22 (1999).

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” Proc. European Conference on Optical Communication, ECOC 98, 475–476 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Pictures of 16 mm outer diameter preforms elaborated by mechanical drilling. Preform for core clad fiber (a: 1 hole); Preforms for microstructured fibers (b: 2 rings/18 holes; c: 3 rings/36 holes; d: 4 rings/64 holes; e: 3 rings/34 holes + 2 big holes); Preforms for suspended core fibers (f: 3 holes, g: 4 holes, h: 6 holes).

Fig. 2
Fig. 2

Geometrical profiles of microstructured optical fibers drawn from performs depicted in Fig. 1. (bf, cf, df, ef, ff, gf and hf correspond to the preforms b, c, d, e, f, g, h respectively). Depending on fibers, the external diameter varies from 120 µm up to 160 µm.

Fig. 3
Fig. 3

Attenuation curve of a single index 200 µm outer diameter As2S3 optical fiber.

Fig. 4
Fig. 4

As2S3 MOFs output beam imaging setup.

Fig. 5
Fig. 5

Mode profiles of some As2S3 MOFs using the output beam imaging setup at 1.55µm.

Fig. 6
Fig. 6

Chromatic dispersion of suspended core As2S3 MOFs with core diameters between 2 µm and 10 µm, and chromatic dispersion of As2S3 MOFs with 34 and 60 holes

Fig. 7
Fig. 7

Experimental set-up of the Mamyshev-based all-optical regenerator.

Fig. 8
Fig. 8

Transfer function of the Mamyshev regenerator (crosses: experimental results; gray line: simulated results).

Fig. 9
Fig. 9

Experimental spectra recorded for 1557 nm fs pumping of a suspended core As2S3 fiber.

Tables (1)

Tables Icon

Table 1 S and As elemental compositions for three different areas of the same As2 S3 glass slide (16 mm diameter and 5 mm thickness).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

As 4 S 4 +S x As 4 S 4+x

Metrics