Abstract

We review the fabrication processes and properties of waveguides that have been made from chalcogenide glasses including highly nonlinear waveguides developed for all-optical processing.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
    [CrossRef]
  2. M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
    [CrossRef]
  3. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010).
    [CrossRef] [PubMed]
  4. A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified Preparation Procedure for Laboratory Melting of Multicomponent Chalcogenide Glasses,” J. Non-Cryst. Solids 139(2), 121–128 (1992).
    [CrossRef]
  5. V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Kryukova, and V. G. Plotnichenko, “Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass,” Inorg. Mater. 41(3), 308–314 (2005).
    [CrossRef]
  6. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
    [CrossRef]
  7. K. Tanaka, “Photoinduced structural changes in amorphous semiconductors,” Semiconductors 32(8), 861–866 (1998).
    [CrossRef]
  8. M. Vlcek and H. Jain, “Nanostructuring of chalcogenide glasses using electron beam lithography,” J, Optoelectron. Adv. Materials 8(6), 2108–2111 (2006).
  9. G. Yang, H. S. Jain, A. T. Ganjoo, D. H. Zhao, Y. S. Xu, H. D. Zeng, and G. R. Chen, “A photo-stable chalcogenide glass,” Opt. Express 16(14), 10565–10571 (2008).
    [CrossRef] [PubMed]
  10. J. C. Phillips, “Topology of Covalent Non-Crystalline Solids. 1. Short-Range Order in Chalcogenide Alloys,” J. Non-Cryst. Solids 34(2), 153–181 (1979).
    [CrossRef]
  11. M. F. Thorpe, “Continuous Deformations in Random Networks,” J. Non-Cryst. Solids 57(3), 355–370 (1983).
    [CrossRef]
  12. K. Tanaka, “Structural phase transitions in chalcogenide glasses,” Phys. Rev. B Condens. Matter 39(2), 1270–1279 (1989).
    [CrossRef] [PubMed]
  13. P. Boolchand, D. G. Georgiev, and B. Goodman, “Discovery of the intermediate phase in chalcogenide glasses,” J. Optoelectron.. Materials 3(3), 703–720 (2001).
  14. D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
    [CrossRef]
  15. V. V. Zigel, A. A. Litvinenko, G. K. Ulyanov, and G. A. Chalabyan, “Ultrasonic dispersive waveguide with a layer of chalcogenide glass on lithium-niobate,” Soviet Phys. Acoustics-USSR 21(1), 77–77 (1975).
  16. Y. Ohmachi, “Acoustooptical Light Diffraction in Thin-Films,” J. Appl. Phys. 44(9), 3928–3933 (1973).
    [CrossRef]
  17. S. Zembutsu and S. Fukunishi, “Waveguiding properties of (Se,S)-based chalcogenide glass films and some applications to optical waveguide devices,” Appl. Opt. 18(3), 393–399 (1979).
    [CrossRef] [PubMed]
  18. C. Meneghini, K. Le Foulgoc, E. J. Knystautas, A. Villeneuve, T. Cardinal, and K. A. Richardson, “Ion implantation: an efficient method for doping or fabricating channel chalcogenide glass waveguides,” in Materials Modification by Ion Irradiation, E. J. Knystautas, ed. (1998), pp. 146–153.
  19. K. Turcotte, J. M. Laniel, A. Villeneuve, C. Lopez, K. Richardson, and O. S. A. Osa, “Fabrication and characterization of chalcogenide optical waveguides,” in Integrated Photonics Research, Technical Digest (2000), pp. 305–308.
  20. A. K. Mairaj, A. Fu, H. N. Rutt, and D. W. Hewak, “Optical channel waveguide in chalcogenide (Ga: La: S) glass,” Electron. Lett. 37(19), 1160–1161 (2001).
    [CrossRef]
  21. A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Chalcogenide three-dimensional photonic structures,” in Integrated Optics Devices V, G. C. Righini and S. Honkanen, eds. (2001), pp. 249–251.
  22. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
    [CrossRef]
  23. A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17(5), 837–842 (1999).
    [CrossRef]
  24. A. Saliminia, K. Le Foulgoc, A. Villeneuve, and T. Galstian, “Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides,” Fiber Integrated Opt. 20(2), 151–158 (2001).
  25. M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Ultra-strong, well-apodised Bragg gratings in chalcogenide rib waveguides,” Electron. Lett. 41(13), 738–739 (2005).
    [CrossRef]
  26. V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900–2902 (2005).
    [CrossRef] [PubMed]
  27. N. J. Baker, H. W. Lee, I. C. M. Littler, C. M. de Sterke, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As(2)S(3)) rib-waveguides,” Opt. Express 14(20), 9451–9459 (2006).
    [CrossRef] [PubMed]
  28. K. Finsterbusch, N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide (As2S3) rib waveguides,” Electron. Lett. 42(19), 1094–1095 (2006).
    [CrossRef]
  29. J. Fick, B. Nicolas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson, M. Fischer, and R. Vallee, “Thermally activated silver diffusion in chalcogenide thin films,” Thin Solid Films 418(2), 215–221 (2002).
    [CrossRef]
  30. R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
    [CrossRef]
  31. R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
    [CrossRef]
  32. C. C. Huang and D. W. Hewak, “Silver-doped germanium sulphide glass channel waveguides fabricated by chemical vapour deposition and photo-dissolution process,” Thin Solid Films 500(1–2), 247–251 (2006).
    [CrossRef]
  33. J. F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17(7), 1184–1191 (1999).
    [CrossRef]
  34. J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
    [CrossRef] [PubMed]
  35. J. J. Hu, N. N. Feng, N. Carlie, L. Petit, J. F. Wang, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss high-index-contrast planar waveguides with graded-index cladding layers,” Opt. Express 15(22), 14566–14572 (2007).
    [CrossRef] [PubMed]
  36. J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
    [CrossRef] [PubMed]
  37. J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
    [CrossRef] [PubMed]
  38. J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
    [CrossRef] [PubMed]
  39. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, D. Bulla, and B. Luther-Davies, “A protective layer on As2S3 film for photo-resist patterning,” J. Non-Cryst. Solids 354(47–51), 5253–5254 (2008).
    [CrossRef]
  40. D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
    [CrossRef]
  41. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
    [CrossRef]
  42. A. C. Y. Liu, X. Chen, D. Y. Choi, and B. Luther-Davies, “Annealing-induced reduction in nanoscale heterogeneity of thermally evaporated amorphous As2S3 films,” J. Appl. Phys. 104(9), 093524 (2008).
    [CrossRef]
  43. D. Y. Choi, S. Madden, D. Bulla, R. P. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
    [CrossRef]
  44. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
    [CrossRef] [PubMed]
  45. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
    [CrossRef] [PubMed]
  46. M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
    [CrossRef] [PubMed]
  47. M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
    [CrossRef]
  48. C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J. E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90(1), 011110 (2007).
    [CrossRef]
  49. M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
    [CrossRef]
  50. Z. G. Lian, W. J. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009).
    [CrossRef] [PubMed]
  51. T. Han, S. Madden, D. A. P. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
    [CrossRef] [PubMed]
  52. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
    [CrossRef] [PubMed]
  53. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
    [CrossRef] [PubMed]
  54. X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As 24Se64.5 nanowires with a onlinear parameter of 136W−1m−1 at 1550nm,” Opt. Express 18(18), 9 (2010).
  55. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
    [CrossRef] [PubMed]
  56. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
    [CrossRef] [PubMed]
  57. X. H. Zhang, L. Calvez, V. Seznec, H. L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, “Infrared transmitting glasses and glass-ceramics,” J. Non-Cryst. Solids 352(23–25), 2411–2415 (2006).
    [CrossRef]

2010

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

D. Y. Choi, S. Madden, D. Bulla, R. P. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

T. Han, S. Madden, D. A. P. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
[CrossRef] [PubMed]

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As 24Se64.5 nanowires with a onlinear parameter of 136W−1m−1 at 1550nm,” Opt. Express 18(18), 9 (2010).

2009

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

Z. G. Lian, W. J. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009).
[CrossRef] [PubMed]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[CrossRef]

2008

G. Yang, H. S. Jain, A. T. Ganjoo, D. H. Zhao, Y. S. Xu, H. D. Zeng, and G. R. Chen, “A photo-stable chalcogenide glass,” Opt. Express 16(14), 10565–10571 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, D. Bulla, and B. Luther-Davies, “A protective layer on As2S3 film for photo-resist patterning,” J. Non-Cryst. Solids 354(47–51), 5253–5254 (2008).
[CrossRef]

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[CrossRef]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

A. C. Y. Liu, X. Chen, D. Y. Choi, and B. Luther-Davies, “Annealing-induced reduction in nanoscale heterogeneity of thermally evaporated amorphous As2S3 films,” J. Appl. Phys. 104(9), 093524 (2008).
[CrossRef]

2007

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[CrossRef]

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J. E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90(1), 011110 (2007).
[CrossRef]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
[CrossRef] [PubMed]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, J. F. Wang, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss high-index-contrast planar waveguides with graded-index cladding layers,” Opt. Express 15(22), 14566–14572 (2007).
[CrossRef] [PubMed]

2006

C. C. Huang and D. W. Hewak, “Silver-doped germanium sulphide glass channel waveguides fabricated by chemical vapour deposition and photo-dissolution process,” Thin Solid Films 500(1–2), 247–251 (2006).
[CrossRef]

N. J. Baker, H. W. Lee, I. C. M. Littler, C. M. de Sterke, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As(2)S(3)) rib-waveguides,” Opt. Express 14(20), 9451–9459 (2006).
[CrossRef] [PubMed]

K. Finsterbusch, N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide (As2S3) rib waveguides,” Electron. Lett. 42(19), 1094–1095 (2006).
[CrossRef]

M. Vlcek and H. Jain, “Nanostructuring of chalcogenide glasses using electron beam lithography,” J, Optoelectron. Adv. Materials 8(6), 2108–2111 (2006).

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

X. H. Zhang, L. Calvez, V. Seznec, H. L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, “Infrared transmitting glasses and glass-ceramics,” J. Non-Cryst. Solids 352(23–25), 2411–2415 (2006).
[CrossRef]

2005

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Kryukova, and V. G. Plotnichenko, “Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass,” Inorg. Mater. 41(3), 308–314 (2005).
[CrossRef]

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Ultra-strong, well-apodised Bragg gratings in chalcogenide rib waveguides,” Electron. Lett. 41(13), 738–739 (2005).
[CrossRef]

V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900–2902 (2005).
[CrossRef] [PubMed]

2004

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[CrossRef]

2002

J. Fick, B. Nicolas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson, M. Fischer, and R. Vallee, “Thermally activated silver diffusion in chalcogenide thin films,” Thin Solid Films 418(2), 215–221 (2002).
[CrossRef]

2001

A. Saliminia, K. Le Foulgoc, A. Villeneuve, and T. Galstian, “Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides,” Fiber Integrated Opt. 20(2), 151–158 (2001).

A. K. Mairaj, A. Fu, H. N. Rutt, and D. W. Hewak, “Optical channel waveguide in chalcogenide (Ga: La: S) glass,” Electron. Lett. 37(19), 1160–1161 (2001).
[CrossRef]

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[CrossRef]

P. Boolchand, D. G. Georgiev, and B. Goodman, “Discovery of the intermediate phase in chalcogenide glasses,” J. Optoelectron.. Materials 3(3), 703–720 (2001).

1999

1998

K. Tanaka, “Photoinduced structural changes in amorphous semiconductors,” Semiconductors 32(8), 861–866 (1998).
[CrossRef]

1995

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[CrossRef]

1992

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified Preparation Procedure for Laboratory Melting of Multicomponent Chalcogenide Glasses,” J. Non-Cryst. Solids 139(2), 121–128 (1992).
[CrossRef]

1989

K. Tanaka, “Structural phase transitions in chalcogenide glasses,” Phys. Rev. B Condens. Matter 39(2), 1270–1279 (1989).
[CrossRef] [PubMed]

1983

M. F. Thorpe, “Continuous Deformations in Random Networks,” J. Non-Cryst. Solids 57(3), 355–370 (1983).
[CrossRef]

1979

J. C. Phillips, “Topology of Covalent Non-Crystalline Solids. 1. Short-Range Order in Chalcogenide Alloys,” J. Non-Cryst. Solids 34(2), 153–181 (1979).
[CrossRef]

S. Zembutsu and S. Fukunishi, “Waveguiding properties of (Se,S)-based chalcogenide glass films and some applications to optical waveguide devices,” Appl. Opt. 18(3), 393–399 (1979).
[CrossRef] [PubMed]

1975

V. V. Zigel, A. A. Litvinenko, G. K. Ulyanov, and G. A. Chalabyan, “Ultrasonic dispersive waveguide with a layer of chalcogenide glass on lithium-niobate,” Soviet Phys. Acoustics-USSR 21(1), 77–77 (1975).

1973

Y. Ohmachi, “Acoustooptical Light Diffraction in Thin-Films,” J. Appl. Phys. 44(9), 3928–3933 (1973).
[CrossRef]

Agarwal, A.

Aggarwal, I. D.

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

Allen, P. J.

Anheier, N. C.

Baker, N.

K. Finsterbusch, N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide (As2S3) rib waveguides,” Electron. Lett. 42(19), 1094–1095 (2006).
[CrossRef]

Baker, N. J.

Benson, T. M.

Bonhomme, E.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J. E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90(1), 011110 (2007).
[CrossRef]

Boolchand, P.

P. Boolchand, D. G. Georgiev, and B. Goodman, “Discovery of the intermediate phase in chalcogenide glasses,” J. Optoelectron.. Materials 3(3), 703–720 (2001).

Boussard-Pledel, C.

X. H. Zhang, L. Calvez, V. Seznec, H. L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, “Infrared transmitting glasses and glass-ceramics,” J. Non-Cryst. Solids 352(23–25), 2411–2415 (2006).
[CrossRef]

Broquin, J. E.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J. E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90(1), 011110 (2007).
[CrossRef]

Bruneel, J. L.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[CrossRef]

Bryce, R. M.

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[CrossRef]

Bulla, D.

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As 24Se64.5 nanowires with a onlinear parameter of 136W−1m−1 at 1550nm,” Opt. Express 18(18), 9 (2010).

D. Y. Choi, S. Madden, D. Bulla, R. P. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[CrossRef]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, D. Bulla, and B. Luther-Davies, “A protective layer on As2S3 film for photo-resist patterning,” J. Non-Cryst. Solids 354(47–51), 5253–5254 (2008).
[CrossRef]

Bulla, D. A.

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

Bulla, D. A. P.

T. Han, S. Madden, D. A. P. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
[CrossRef] [PubMed]

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Calvez, L.

X. H. Zhang, L. Calvez, V. Seznec, H. L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, “Infrared transmitting glasses and glass-ceramics,” J. Non-Cryst. Solids 352(23–25), 2411–2415 (2006).
[CrossRef]

Cardinal, T.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[CrossRef]

J. F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17(7), 1184–1191 (1999).
[CrossRef]

Carlie, N.

Chalabyan, G. A.

V. V. Zigel, A. A. Litvinenko, G. K. Ulyanov, and G. A. Chalabyan, “Ultrasonic dispersive waveguide with a layer of chalcogenide glass on lithium-niobate,” Soviet Phys. Acoustics-USSR 21(1), 77–77 (1975).

Chen, G. R.

Chen, X.

A. C. Y. Liu, X. Chen, D. Y. Choi, and B. Luther-Davies, “Annealing-induced reduction in nanoscale heterogeneity of thermally evaporated amorphous As2S3 films,” J. Appl. Phys. 104(9), 093524 (2008).
[CrossRef]

Cheng, X.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[CrossRef]

Choi, D.

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As 24Se64.5 nanowires with a onlinear parameter of 136W−1m−1 at 1550nm,” Opt. Express 18(18), 9 (2010).

K. Finsterbusch, N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide (As2S3) rib waveguides,” Electron. Lett. 42(19), 1094–1095 (2006).
[CrossRef]

Choi, D. Y.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

D. Y. Choi, S. Madden, D. Bulla, R. P. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[CrossRef]

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, D. Bulla, and B. Luther-Davies, “A protective layer on As2S3 film for photo-resist patterning,” J. Non-Cryst. Solids 354(47–51), 5253–5254 (2008).
[CrossRef]

A. C. Y. Liu, X. Chen, D. Y. Choi, and B. Luther-Davies, “Annealing-induced reduction in nanoscale heterogeneity of thermally evaporated amorphous As2S3 films,” J. Appl. Phys. 104(9), 093524 (2008).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[CrossRef]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

N. J. Baker, H. W. Lee, I. C. M. Littler, C. M. de Sterke, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As(2)S(3)) rib-waveguides,” Opt. Express 14(20), 9451–9459 (2006).
[CrossRef] [PubMed]

Churbanov, M. F.

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Kryukova, and V. G. Plotnichenko, “Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass,” Inorg. Mater. 41(3), 308–314 (2005).
[CrossRef]

Clausen, A. T.

Clement, T. J.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

Couzi, M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[CrossRef]

Danto, S.

X. H. Zhang, L. Calvez, V. Seznec, H. L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, “Infrared transmitting glasses and glass-ceramics,” J. Non-Cryst. Solids 352(23–25), 2411–2415 (2006).
[CrossRef]

de Sterke, C. M.

DeCorby, R. G.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[CrossRef]

Duguay, M. A.

Dwivedi, P. K.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[CrossRef]

Efimov, O. M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[CrossRef]

Eggleton, B. J.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

K. Finsterbusch, N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide (As2S3) rib waveguides,” Electron. Lett. 42(19), 1094–1095 (2006).
[CrossRef]

N. J. Baker, H. W. Lee, I. C. M. Littler, C. M. de Sterke, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As(2)S(3)) rib-waveguides,” Opt. Express 14(20), 9451–9459 (2006).
[CrossRef] [PubMed]

V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900–2902 (2005).
[CrossRef] [PubMed]

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Ultra-strong, well-apodised Bragg gratings in chalcogenide rib waveguides,” Electron. Lett. 41(13), 738–739 (2005).
[CrossRef]

Elliott, S. R.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[CrossRef]

Elshot, K.

J. Fick, B. Nicolas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson, M. Fischer, and R. Vallee, “Thermally activated silver diffusion in chalcogenide thin films,” Thin Solid Films 418(2), 215–221 (2002).
[CrossRef]

Feng, N. N.

Fick, J.

J. Fick, B. Nicolas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson, M. Fischer, and R. Vallee, “Thermally activated silver diffusion in chalcogenide thin films,” Thin Solid Films 418(2), 215–221 (2002).
[CrossRef]

Finsterbusch, K.

K. Finsterbusch, N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide (As2S3) rib waveguides,” Electron. Lett. 42(19), 1094–1095 (2006).
[CrossRef]

Fischer, M.

J. Fick, B. Nicolas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson, M. Fischer, and R. Vallee, “Thermally activated silver diffusion in chalcogenide thin films,” Thin Solid Films 418(2), 215–221 (2002).
[CrossRef]

Foster, M. A.

Fu, A.

A. K. Mairaj, A. Fu, H. N. Rutt, and D. W. Hewak, “Optical channel waveguide in chalcogenide (Ga: La: S) glass,” Electron. Lett. 37(19), 1160–1161 (2001).
[CrossRef]

Fu, L. B.

M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900–2902 (2005).
[CrossRef] [PubMed]

Fukunishi, S.

Furniss, D.

Gaeta, A. L.

Gai, X.

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As 24Se64.5 nanowires with a onlinear parameter of 136W−1m−1 at 1550nm,” Opt. Express 18(18), 9 (2010).

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

Galili, M.

Galstian, T.

A. Saliminia, K. Le Foulgoc, A. Villeneuve, and T. Galstian, “Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides,” Fiber Integrated Opt. 20(2), 151–158 (2001).

Galstian, T. V.

Galstyan, T. V.

Ganjoo, A. T.

Georgiev, D. G.

P. Boolchand, D. G. Georgiev, and B. Goodman, “Discovery of the intermediate phase in chalcogenide glasses,” J. Optoelectron.. Materials 3(3), 703–720 (2001).

Glebov, L. B.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[CrossRef]

Goodman, B.

P. Boolchand, D. G. Georgiev, and B. Goodman, “Discovery of the intermediate phase in chalcogenide glasses,” J. Optoelectron.. Materials 3(3), 703–720 (2001).

Han, T.

Haugen, C. J.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[CrossRef]

Hewak, D. W.

C. C. Huang and D. W. Hewak, “Silver-doped germanium sulphide glass channel waveguides fabricated by chemical vapour deposition and photo-dissolution process,” Thin Solid Films 500(1–2), 247–251 (2006).
[CrossRef]

A. K. Mairaj, A. Fu, H. N. Rutt, and D. W. Hewak, “Optical channel waveguide in chalcogenide (Ga: La: S) glass,” Electron. Lett. 37(19), 1160–1161 (2001).
[CrossRef]

Hô, N.

Houizot, P.

X. H. Zhang, L. Calvez, V. Seznec, H. L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, “Infrared transmitting glasses and glass-ceramics,” J. Non-Cryst. Solids 352(23–25), 2411–2415 (2006).
[CrossRef]

Hu, J.

Hu, J. J.

Huang, C. C.

C. C. Huang and D. W. Hewak, “Silver-doped germanium sulphide glass channel waveguides fabricated by chemical vapour deposition and photo-dissolution process,” Thin Solid Films 500(1–2), 247–251 (2006).
[CrossRef]

Irwin, R.

J. Fick, B. Nicolas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson, M. Fischer, and R. Vallee, “Thermally activated silver diffusion in chalcogenide thin films,” Thin Solid Films 418(2), 215–221 (2002).
[CrossRef]

Jain, H.

M. Vlcek and H. Jain, “Nanostructuring of chalcogenide glasses using electron beam lithography,” J, Optoelectron. Adv. Materials 8(6), 2108–2111 (2006).

Jain, H. S.

Jeppesen, P.

Kasap, S. O.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[CrossRef]

Kern, P.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J. E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90(1), 011110 (2007).
[CrossRef]

Kimerling, L.

Knystautas, E. J.

Kohoutek, T.

Kolobov, A.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[CrossRef]

Krishnaswami, K.

Kryukova, E. B.

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Kryukova, and V. G. Plotnichenko, “Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass,” Inorg. Mater. 41(3), 308–314 (2005).
[CrossRef]

Labadie, L.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J. E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90(1), 011110 (2007).
[CrossRef]

Lamont, M. R. E.

LaRochelle, S.

Le Foulgoc, K.

A. Saliminia, K. Le Foulgoc, A. Villeneuve, and T. Galstian, “Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides,” Fiber Integrated Opt. 20(2), 151–158 (2001).

Lee, H. W.

Lian, Z. G.

Lipson, M.

Littler, I. C. M.

Litvinenko, A. A.

V. V. Zigel, A. A. Litvinenko, G. K. Ulyanov, and G. A. Chalabyan, “Ultrasonic dispersive waveguide with a layer of chalcogenide glass on lithium-niobate,” Soviet Phys. Acoustics-USSR 21(1), 77–77 (1975).

Liu, A. C. Y.

A. C. Y. Liu, X. Chen, D. Y. Choi, and B. Luther-Davies, “Annealing-induced reduction in nanoscale heterogeneity of thermally evaporated amorphous As2S3 films,” J. Appl. Phys. 104(9), 093524 (2008).
[CrossRef]

Luan, F.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

Lucas, J.

X. H. Zhang, L. Calvez, V. Seznec, H. L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, “Infrared transmitting glasses and glass-ceramics,” J. Non-Cryst. Solids 352(23–25), 2411–2415 (2006).
[CrossRef]

Luther-Davies, B.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

D. Y. Choi, S. Madden, D. Bulla, R. P. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[CrossRef]

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As 24Se64.5 nanowires with a onlinear parameter of 136W−1m−1 at 1550nm,” Opt. Express 18(18), 9 (2010).

T. Han, S. Madden, D. A. P. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

A. C. Y. Liu, X. Chen, D. Y. Choi, and B. Luther-Davies, “Annealing-induced reduction in nanoscale heterogeneity of thermally evaporated amorphous As2S3 films,” J. Appl. Phys. 104(9), 093524 (2008).
[CrossRef]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, D. Bulla, and B. Luther-Davies, “A protective layer on As2S3 film for photo-resist patterning,” J. Non-Cryst. Solids 354(47–51), 5253–5254 (2008).
[CrossRef]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[CrossRef]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

N. J. Baker, H. W. Lee, I. C. M. Littler, C. M. de Sterke, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As(2)S(3)) rib-waveguides,” Opt. Express 14(20), 9451–9459 (2006).
[CrossRef] [PubMed]

V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900–2902 (2005).
[CrossRef] [PubMed]

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Ultra-strong, well-apodised Bragg gratings in chalcogenide rib waveguides,” Electron. Lett. 41(13), 738–739 (2005).
[CrossRef]

Luther-Davis, B.

Ma, H. L.

X. H. Zhang, L. Calvez, V. Seznec, H. L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, “Infrared transmitting glasses and glass-ceramics,” J. Non-Cryst. Solids 352(23–25), 2411–2415 (2006).
[CrossRef]

Madden, S.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As 24Se64.5 nanowires with a onlinear parameter of 136W−1m−1 at 1550nm,” Opt. Express 18(18), 9 (2010).

T. Han, S. Madden, D. A. P. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, D. Bulla, R. P. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[CrossRef]

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, D. Bulla, and B. Luther-Davies, “A protective layer on As2S3 film for photo-resist patterning,” J. Non-Cryst. Solids 354(47–51), 5253–5254 (2008).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[CrossRef]

K. Finsterbusch, N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide (As2S3) rib waveguides,” Electron. Lett. 42(19), 1094–1095 (2006).
[CrossRef]

N. J. Baker, H. W. Lee, I. C. M. Littler, C. M. de Sterke, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As(2)S(3)) rib-waveguides,” Opt. Express 14(20), 9451–9459 (2006).
[CrossRef] [PubMed]

Madden, S. J.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[CrossRef]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

Madsen, C. K.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[CrossRef]

Magi, E.

M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Mairaj, A. K.

A. K. Mairaj, A. Fu, H. N. Rutt, and D. W. Hewak, “Optical channel waveguide in chalcogenide (Ga: La: S) glass,” Electron. Lett. 37(19), 1160–1161 (2001).
[CrossRef]

McMullin, J. N.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[CrossRef]

Meneghini, C.

Menyuk, C. R.

Moss, D. J.

V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900–2902 (2005).
[CrossRef] [PubMed]

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Ultra-strong, well-apodised Bragg gratings in chalcogenide rib waveguides,” Electron. Lett. 41(13), 738–739 (2005).
[CrossRef]

Mulvad, H. C. H.

Myers, T. L.

Nakeeran, P.

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[CrossRef]

Nguyen, H. T.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[CrossRef]

Nicolas, B.

J. Fick, B. Nicolas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson, M. Fischer, and R. Vallee, “Thermally activated silver diffusion in chalcogenide thin films,” Thin Solid Films 418(2), 215–221 (2002).
[CrossRef]

Ohmachi, Y.

Y. Ohmachi, “Acoustooptical Light Diffraction in Thin-Films,” J. Appl. Phys. 44(9), 3928–3933 (1973).
[CrossRef]

Orava, J.

Ovchinnikov, D. K.

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Kryukova, and V. G. Plotnichenko, “Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass,” Inorg. Mater. 41(3), 308–314 (2005).
[CrossRef]

Oxenløwe, L. K.

Pai, M. M.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

Pan, W. J.

Park, H.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[CrossRef]

Park, S. H.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[CrossRef]

Pelusi, M.

Pelusi, M. D.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

Petit, L.

Phillips, J. C.

J. C. Phillips, “Topology of Covalent Non-Crystalline Solids. 1. Short-Range Order in Chalcogenide Alloys,” J. Non-Cryst. Solids 34(2), 153–181 (1979).
[CrossRef]

Phillips, M. C.

Plotnichenko, V. G.

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Kryukova, and V. G. Plotnichenko, “Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass,” Inorg. Mater. 41(3), 308–314 (2005).
[CrossRef]

Ponnampalam, N.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

Pradel, A.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J. E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90(1), 011110 (2007).
[CrossRef]

Prasad, A.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[CrossRef]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

Qiao, H.

Reitter, A. M.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified Preparation Procedure for Laboratory Melting of Multicomponent Chalcogenide Glasses,” J. Non-Cryst. Solids 139(2), 121–128 (1992).
[CrossRef]

Richardson, K.

Richardson, K. A.

J. Fick, B. Nicolas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson, M. Fischer, and R. Vallee, “Thermally activated silver diffusion in chalcogenide thin films,” Thin Solid Films 418(2), 215–221 (2002).
[CrossRef]

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[CrossRef]

J. F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17(7), 1184–1191 (1999).
[CrossRef]

Riley, B. J.

Rivero, C.

J. Fick, B. Nicolas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson, M. Fischer, and R. Vallee, “Thermally activated silver diffusion in chalcogenide thin films,” Thin Solid Films 418(2), 215–221 (2002).
[CrossRef]

Rochette, M.

Rode, A.

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

D. Y. Choi, S. Madden, D. Bulla, R. P. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[CrossRef]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, D. Bulla, and B. Luther-Davies, “A protective layer on As2S3 film for photo-resist patterning,” J. Non-Cryst. Solids 354(47–51), 5253–5254 (2008).
[CrossRef]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[CrossRef]

Rode, A. V.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[CrossRef]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

Ruan, Y.

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Ultra-strong, well-apodised Bragg gratings in chalcogenide rib waveguides,” Electron. Lett. 41(13), 738–739 (2005).
[CrossRef]

Ruan, Y. L.

Rutt, H. N.

A. K. Mairaj, A. Fu, H. N. Rutt, and D. W. Hewak, “Optical channel waveguide in chalcogenide (Ga: La: S) glass,” Electron. Lett. 37(19), 1160–1161 (2001).
[CrossRef]

Saliminia, A.

A. Saliminia, K. Le Foulgoc, A. Villeneuve, and T. Galstian, “Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides,” Fiber Integrated Opt. 20(2), 151–158 (2001).

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17(5), 837–842 (1999).
[CrossRef]

Sanghera, J. S.

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

Seddon, A. B.

Seznec, V.

X. H. Zhang, L. Calvez, V. Seznec, H. L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, “Infrared transmitting glasses and glass-ceramics,” J. Non-Cryst. Solids 352(23–25), 2411–2415 (2006).
[CrossRef]

Shaw, L. B.

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

Shimakawa, K.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[CrossRef]

Shiryaev, V. S.

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Kryukova, and V. G. Plotnichenko, “Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass,” Inorg. Mater. 41(3), 308–314 (2005).
[CrossRef]

Shokooh-Saremi, M.

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Ultra-strong, well-apodised Bragg gratings in chalcogenide rib waveguides,” Electron. Lett. 41(13), 738–739 (2005).
[CrossRef]

V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900–2902 (2005).
[CrossRef] [PubMed]

Smetanin, S. V.

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Kryukova, and V. G. Plotnichenko, “Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass,” Inorg. Mater. 41(3), 308–314 (2005).
[CrossRef]

Smith, A.

Solmaz, M.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[CrossRef]

Sreeram, A. N.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified Preparation Procedure for Laboratory Melting of Multicomponent Chalcogenide Glasses,” J. Non-Cryst. Solids 139(2), 121–128 (1992).
[CrossRef]

Swiler, D. R.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified Preparation Procedure for Laboratory Melting of Multicomponent Chalcogenide Glasses,” J. Non-Cryst. Solids 139(2), 121–128 (1992).
[CrossRef]

Ta’eed, V. G.

Ta'eed, V. G.

M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

K. Finsterbusch, N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide (As2S3) rib waveguides,” Electron. Lett. 42(19), 1094–1095 (2006).
[CrossRef]

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Ultra-strong, well-apodised Bragg gratings in chalcogenide rib waveguides,” Electron. Lett. 41(13), 738–739 (2005).
[CrossRef]

Tanaka, K.

K. Tanaka, “Photoinduced structural changes in amorphous semiconductors,” Semiconductors 32(8), 861–866 (1998).
[CrossRef]

K. Tanaka, “Structural phase transitions in chalcogenide glasses,” Phys. Rev. B Condens. Matter 39(2), 1270–1279 (1989).
[CrossRef] [PubMed]

Tarasov, V.

Thorpe, M. F.

M. F. Thorpe, “Continuous Deformations in Random Networks,” J. Non-Cryst. Solids 57(3), 355–370 (1983).
[CrossRef]

Turner, A. C.

Ulyanov, G. K.

V. V. Zigel, A. A. Litvinenko, G. K. Ulyanov, and G. A. Chalabyan, “Ultrasonic dispersive waveguide with a layer of chalcogenide glass on lithium-niobate,” Soviet Phys. Acoustics-USSR 21(1), 77–77 (1975).

Vallee, R.

J. Fick, B. Nicolas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson, M. Fischer, and R. Vallee, “Thermally activated silver diffusion in chalcogenide thin films,” Thin Solid Films 418(2), 215–221 (2002).
[CrossRef]

Van Stryland, E.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[CrossRef]

Varshneya, A. K.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified Preparation Procedure for Laboratory Melting of Multicomponent Chalcogenide Glasses,” J. Non-Cryst. Solids 139(2), 121–128 (1992).
[CrossRef]

Viens, J. F.

Vigreux-Bercovici, C.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J. E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90(1), 011110 (2007).
[CrossRef]

Villeneuve, A.

Vlcek, M.

M. Vlcek and H. Jain, “Nanostructuring of chalcogenide glasses using electron beam lithography,” J, Optoelectron. Adv. Materials 8(6), 2108–2111 (2006).

Wagner, T.

Wang, J. F.

Wang, R.

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

Wang, R. P.

D. Y. Choi, S. Madden, D. Bulla, R. P. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[CrossRef]

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[CrossRef]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, D. Bulla, and B. Luther-Davies, “A protective layer on As2S3 film for photo-resist patterning,” J. Non-Cryst. Solids 354(47–51), 5253–5254 (2008).
[CrossRef]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[CrossRef]

Xu, J.

Xu, Y. S.

Yang, G.

Zembutsu, S.

Zeng, H. D.

Zha, C. J.

Zhang, X. H.

X. H. Zhang, L. Calvez, V. Seznec, H. L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, “Infrared transmitting glasses and glass-ceramics,” J. Non-Cryst. Solids 352(23–25), 2411–2415 (2006).
[CrossRef]

Zhao, D. H.

Zigel, V. V.

V. V. Zigel, A. A. Litvinenko, G. K. Ulyanov, and G. A. Chalabyan, “Ultrasonic dispersive waveguide with a layer of chalcogenide glass on lithium-niobate,” Soviet Phys. Acoustics-USSR 21(1), 77–77 (1975).

Adv. Phys.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J. E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90(1), 011110 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[CrossRef]

Electron. Lett.

A. K. Mairaj, A. Fu, H. N. Rutt, and D. W. Hewak, “Optical channel waveguide in chalcogenide (Ga: La: S) glass,” Electron. Lett. 37(19), 1160–1161 (2001).
[CrossRef]

M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Ultra-strong, well-apodised Bragg gratings in chalcogenide rib waveguides,” Electron. Lett. 41(13), 738–739 (2005).
[CrossRef]

K. Finsterbusch, N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide (As2S3) rib waveguides,” Electron. Lett. 42(19), 1094–1095 (2006).
[CrossRef]

Fiber Integrated Opt.

A. Saliminia, K. Le Foulgoc, A. Villeneuve, and T. Galstian, “Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides,” Fiber Integrated Opt. 20(2), 151–158 (2001).

IEEE J. Sel. Top. Quantum Electron.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005).
[CrossRef]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

Inorg. Mater.

V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Kryukova, and V. G. Plotnichenko, “Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass,” Inorg. Mater. 41(3), 308–314 (2005).
[CrossRef]

J, Optoelectron. Adv. Materials

M. Vlcek and H. Jain, “Nanostructuring of chalcogenide glasses using electron beam lithography,” J, Optoelectron. Adv. Materials 8(6), 2108–2111 (2006).

J. Appl. Phys.

Y. Ohmachi, “Acoustooptical Light Diffraction in Thin-Films,” J. Appl. Phys. 44(9), 3928–3933 (1973).
[CrossRef]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007).
[CrossRef]

A. C. Y. Liu, X. Chen, D. Y. Choi, and B. Luther-Davies, “Annealing-induced reduction in nanoscale heterogeneity of thermally evaporated amorphous As2S3 films,” J. Appl. Phys. 104(9), 093524 (2008).
[CrossRef]

D. Y. Choi, S. Madden, D. Bulla, R. P. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

J. C. Phillips, “Topology of Covalent Non-Crystalline Solids. 1. Short-Range Order in Chalcogenide Alloys,” J. Non-Cryst. Solids 34(2), 153–181 (1979).
[CrossRef]

M. F. Thorpe, “Continuous Deformations in Random Networks,” J. Non-Cryst. Solids 57(3), 355–370 (1983).
[CrossRef]

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified Preparation Procedure for Laboratory Melting of Multicomponent Chalcogenide Glasses,” J. Non-Cryst. Solids 139(2), 121–128 (1992).
[CrossRef]

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, D. Bulla, and B. Luther-Davies, “A protective layer on As2S3 film for photo-resist patterning,” J. Non-Cryst. Solids 354(47–51), 5253–5254 (2008).
[CrossRef]

X. H. Zhang, L. Calvez, V. Seznec, H. L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, “Infrared transmitting glasses and glass-ceramics,” J. Non-Cryst. Solids 352(23–25), 2411–2415 (2006).
[CrossRef]

J. Optoelectron.. Materials

P. Boolchand, D. G. Georgiev, and B. Goodman, “Discovery of the intermediate phase in chalcogenide glasses,” J. Optoelectron.. Materials 3(3), 703–720 (2001).

J. Vac. Sci. Technol. A

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004).
[CrossRef]

J. Vac. Sci. Technol. B

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008).
[CrossRef]

Opt. Express

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

T. Han, S. Madden, D. A. P. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010).
[CrossRef] [PubMed]

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As 24Se64.5 nanowires with a onlinear parameter of 136W−1m−1 at 1550nm,” Opt. Express 18(18), 9 (2010).

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010).
[CrossRef] [PubMed]

G. Yang, H. S. Jain, A. T. Ganjoo, D. H. Zhao, Y. S. Xu, H. D. Zeng, and G. R. Chen, “A photo-stable chalcogenide glass,” Opt. Express 16(14), 10565–10571 (2008).
[CrossRef] [PubMed]

N. J. Baker, H. W. Lee, I. C. M. Littler, C. M. de Sterke, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As(2)S(3)) rib-waveguides,” Opt. Express 14(20), 9451–9459 (2006).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007).
[CrossRef] [PubMed]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, J. F. Wang, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss high-index-contrast planar waveguides with graded-index cladding layers,” Opt. Express 15(22), 14566–14572 (2007).
[CrossRef] [PubMed]

J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[CrossRef]

Phys. Rev. B Condens. Matter

K. Tanaka, “Structural phase transitions in chalcogenide glasses,” Phys. Rev. B Condens. Matter 39(2), 1270–1279 (1989).
[CrossRef] [PubMed]

Semiconductors

K. Tanaka, “Photoinduced structural changes in amorphous semiconductors,” Semiconductors 32(8), 861–866 (1998).
[CrossRef]

Soviet Phys. Acoustics-USSR

V. V. Zigel, A. A. Litvinenko, G. K. Ulyanov, and G. A. Chalabyan, “Ultrasonic dispersive waveguide with a layer of chalcogenide glass on lithium-niobate,” Soviet Phys. Acoustics-USSR 21(1), 77–77 (1975).

Thin Solid Films

C. C. Huang and D. W. Hewak, “Silver-doped germanium sulphide glass channel waveguides fabricated by chemical vapour deposition and photo-dissolution process,” Thin Solid Films 500(1–2), 247–251 (2006).
[CrossRef]

J. Fick, B. Nicolas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson, M. Fischer, and R. Vallee, “Thermally activated silver diffusion in chalcogenide thin films,” Thin Solid Films 418(2), 215–221 (2002).
[CrossRef]

Other

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Chalcogenide three-dimensional photonic structures,” in Integrated Optics Devices V, G. C. Righini and S. Honkanen, eds. (2001), pp. 249–251.

C. Meneghini, K. Le Foulgoc, E. J. Knystautas, A. Villeneuve, T. Cardinal, and K. A. Richardson, “Ion implantation: an efficient method for doping or fabricating channel chalcogenide glass waveguides,” in Materials Modification by Ion Irradiation, E. J. Knystautas, ed. (1998), pp. 146–153.

K. Turcotte, J. M. Laniel, A. Villeneuve, C. Lopez, K. Richardson, and O. S. A. Osa, “Fabrication and characterization of chalcogenide optical waveguides,” in Integrated Photonics Research, Technical Digest (2000), pp. 305–308.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Optical micrograph of the cross-section of an As2S3 waveguide with a 40nm thick SU8 coating; 1(b) a micrograph without the coating present showing more vertical waveguide sidewalls; 1(c) a dark-field micrograph of the embossed surface in the presence of the SU8 coating; 1(d) a similar dark-field micrograph of the embossed surface without SU8 coating showing crystallization of the surface.

Fig. 2
Fig. 2

Insertion loss vs length for TE mode of embossed As2S3 waveguide nominally 2.6µm wide x 850nm high.

Fig. 3
Fig. 3

LHS: group velocity dispersion (GVD) for a 765nm x 4µm air-clad rib waveguide in Ge11.5As24Se64.5 with 50% etch depth; RHS: GVD for 765nm x 3µm rib air clad rib waveguide with 50% etch depth.

Fig. 4
Fig. 4

SEM image of the cross section of 4µm wide Ge11.5As24Se64.5 air clad rib waveguide.

Fig. 5
Fig. 5

“fiber fuse” damage in a 3µm wide Ge11.5As24Se64.5 rib waveguide without Al2O3 coating exposed to CW power around 40mW. The track extends over a distance of about 1cm in this case and appears to originate at a defect in the waveguide. The molten damage snakes along the waveguide back to the entrance surface.

Fig. 6
Fig. 6

An SEM image showing the cross section of an IPG coated of 500nm x550nm Ge11.5As24Se64.5 nanowire with loss of 1.5dB/cm (TM mode)

Fig. 7
Fig. 7

Optical micrographs of buried channel waveguides using a Ge11.5As24Se64.5 core surrounded by a As36S64 cladding. In the image on the LHS the core dimensions are ≈1.7µm x 1.7µm whilst on the RHS the core is 3.7µm x 1.7µm. No evidence the existence of voids near the corners of the etched core are visible. The notches on the top interface between the As36S64 and air is caused by masking effects during the deposition of the cladding layer.

Metrics