Abstract

We report time domain measurements of the group-velocity-dispersion-induced and nonlinearity-induced chirping of femtosecond pulses in subwavelength silicon-on-insulator waveguides. We observe that at a critical input power level, these two effects compensate each other leading to soliton formation. Formation of the fundamental optical soliton is observed at a peak power of a few Watts inside the waveguide. Interferometric cross-correlation traces reveal compression of the soliton pulses, while spectral measurements show pronounced dispersive (Cherenkov) waves emitted by solitons into the wavelength range of normal group velocity dispersion.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [CrossRef]
  2. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering Nonlinearities in “Nanoscale Optical Systems: Physics and Applications in Dispersion-Engineered Si Nanophotonic Wires,”,” Adv. Opt. Photon. 1, 162–235 (2009).
    [CrossRef]
  3. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [CrossRef] [PubMed]
  4. I. W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, R. M. McNab, J. Sharee, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14, 12380–12387 (2006).
    [CrossRef] [PubMed]
  5. D. V. Skryabin, and A. V. Gorbach, “Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
    [CrossRef]
  6. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Optical solitons in a silicon waveguide,” Opt. Express 15, 7682–7688 (2007).
    [CrossRef] [PubMed]
  7. W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, and R. M. De-La-Rue, “Solitons and spectral broadening in long silicon-on- insulator photonic wires,” Opt. Express 16, 3310–3319 (2008).
    [CrossRef] [PubMed]
  8. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
    [CrossRef]
  9. D. Strickland, and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [CrossRef]
  10. K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16, 990–996 (1980).
    [CrossRef]
  11. T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
    [CrossRef] [PubMed]
  12. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007).
    [CrossRef] [PubMed]
  13. C. J. Benton, A. V. Gorbach, and D. V. Skryabin, “Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires,” Phys. Rev. A 78, 033818 (2008).
    [CrossRef]
  14. A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
    [CrossRef]

2010

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

D. V. Skryabin, and A. V. Gorbach, “Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[CrossRef]

A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
[CrossRef]

2009

2008

W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, and R. M. De-La-Rue, “Solitons and spectral broadening in long silicon-on- insulator photonic wires,” Opt. Express 16, 3310–3319 (2008).
[CrossRef] [PubMed]

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

C. J. Benton, A. V. Gorbach, and D. V. Skryabin, “Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires,” Phys. Rev. A 78, 033818 (2008).
[CrossRef]

2007

2006

1985

D. Strickland, and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

1980

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16, 990–996 (1980).
[CrossRef]

Agrawal, G. P.

Alloatti, L.

Baets, R.

Benton, C.

Benton, C. J.

C. J. Benton, A. V. Gorbach, and D. V. Skryabin, “Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires,” Phys. Rev. A 78, 033818 (2008).
[CrossRef]

Biaggio, I.

Bogatscher, S.

Boyd, R. W.

Chen, X.

Dadap, J. I.

De La Rue, R. M.

A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
[CrossRef]

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

de Nobriga, C. E.

A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
[CrossRef]

De-La-Rue, R. M.

Diederich, F.

Ding, W.

A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
[CrossRef]

W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, and R. M. De-La-Rue, “Solitons and spectral broadening in long silicon-on- insulator photonic wires,” Opt. Express 16, 3310–3319 (2008).
[CrossRef] [PubMed]

Dulkeith, E.

Dumon, P.

Fauchet, P. M.

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Freude, W.

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Gnan, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, and R. M. De-La-Rue, “Solitons and spectral broadening in long silicon-on- insulator photonic wires,” Opt. Express 16, 3310–3319 (2008).
[CrossRef] [PubMed]

Gorbach, A. V.

A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
[CrossRef]

D. V. Skryabin, and A. V. Gorbach, “Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[CrossRef]

W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, and R. M. De-La-Rue, “Solitons and spectral broadening in long silicon-on- insulator photonic wires,” Opt. Express 16, 3310–3319 (2008).
[CrossRef] [PubMed]

C. J. Benton, A. V. Gorbach, and D. V. Skryabin, “Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires,” Phys. Rev. A 78, 033818 (2008).
[CrossRef]

Green, W. M.

Hall, G. E.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16, 990–996 (1980).
[CrossRef]

Hobbs, G. D.

A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
[CrossRef]

Hsieh, I. W.

Kenney-Wallace, G. A.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16, 990–996 (1980).
[CrossRef]

Knight, J. C.

A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
[CrossRef]

W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, and R. M. De-La-Rue, “Solitons and spectral broadening in long silicon-on- insulator photonic wires,” Opt. Express 16, 3310–3319 (2008).
[CrossRef] [PubMed]

Koos, C.

Leuthold, J.

Lin, Q.

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Liu, X.

Macintyre, D. S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

McNab, R. M.

Mourou, G.

D. Strickland, and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Osgood, R. M.

Panoiu, N. C.

Piredda, G.

Sala, K. L.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16, 990–996 (1980).
[CrossRef]

Samarelli, A.

A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Scimeca, M. L.

Sharee, J.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Skryabin, D. V.

D. V. Skryabin, and A. V. Gorbach, “Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[CrossRef]

A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
[CrossRef]

C. J. Benton, A. V. Gorbach, and D. V. Skryabin, “Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires,” Phys. Rev. A 78, 033818 (2008).
[CrossRef]

W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, and R. M. De-La-Rue, “Solitons and spectral broadening in long silicon-on- insulator photonic wires,” Opt. Express 16, 3310–3319 (2008).
[CrossRef] [PubMed]

Sorel, M.

A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
[CrossRef]

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

Sorrel, M.

Staines, O. K.

A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
[CrossRef]

Strickland, D.

D. Strickland, and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Thoms, S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Vallaitis, T.

Vlasov, Y. A.

Wadsworth, W. J.

A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
[CrossRef]

W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, and R. M. De-La-Rue, “Solitons and spectral broadening in long silicon-on- insulator photonic wires,” Opt. Express 16, 3310–3319 (2008).
[CrossRef] [PubMed]

Yin, L.

Zhang, J.

Adv. Opt. Photon.

Electron. Lett.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[CrossRef]

IEEE J. Quantum Electron.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. 16, 990–996 (1980).
[CrossRef]

Nat. Photonics

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[CrossRef]

Nature

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Opt. Commun.

D. Strickland, and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

C. J. Benton, A. V. Gorbach, and D. V. Skryabin, “Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires,” Phys. Rev. A 78, 033818 (2008).
[CrossRef]

A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A 82, 041802 (2010).
[CrossRef]

Rev. Mod. Phys.

D. V. Skryabin, and A. V. Gorbach, “Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Measured group index (solid squares) and 5th order polynomial fit (curve) of the SOI waveguide as a function of wavelength. (b) Group velocity dispersion (GVD), β2, as a function of wavelength. The vertical line shows the carrier wavelength of the pump pulse. The gray area shows the predicted region for Cherenkov radiation.

Fig. 2
Fig. 2

Experimental setup. ISO: isolator; BPF: band-pass filter; Pol.: polarizer; BS: beam splitter; DUT: device under test; FM: flip mirror. Dashed lines stand for optical beams. The insert plot shows the interferometric auto-correlation trace of the input pulses.

Fig. 3
Fig. 3

(Color online) (a) Measured interferometric cross-correlation traces with varying input power levels. The first three curves are multiplied by 3, 2.5, and 2 respectively. The symbols L, C, and T represent the leading, central, and trailing regions of the pulse. (b) FWHM of the intensity cross-correlation traces as a function of input power. The red line stands for the FWHM of the intensity auto-correlation trace of the input pulse. (c) Averaged wavelength in the leading (black squares), central (red circles), and trailing (green triangles) regions of the interferometric cross-correlation traces as a function of input power.

Fig. 4
Fig. 4

(Color online) Measured output spectra with increasing input power (log scale). The vertical dashed line shows the zero GVD wavelength.

Fig. 5
Fig. 5

(Color online) (a) Output spectra and (b) the corresponding cross-correlation traces for 50μW (black), 1mW (red), and 4mW (blue) of the input power, respectively.

Fig. 6
Fig. 6

(a) Output power as a function of input power. (b) Integral of the cross-correlation traces with varying input power level. The grey area represents the error introduced by the integration process.

Metrics