Abstract

We present the first demonstration of frequency conversion by simultaneous second- and third-harmonic generation in a silicon photonic crystal nanocavity using continuous-wave optical excitation. We observe a bright dual wavelength emission in the blue/green (450–525 nm) and red (675–790 nm) visible windows with pump powers as low as few microwatts in the telecom bands, with conversion efficiencies of ∼ 10−5/W and ∼ 10/W2 for the second- and third-harmonic, respectively. Scaling behaviors as a function of pump power and cavity quality-factor are demonstrated for both second- and third order processes. Successful comparison of measured and calculated emission patterns indicates that third-harmonic is a bulk effect while second-harmonic is a surface-related effect at the sidewall holes boundaries. Our results are promising for obtaining practical low-power, continuous-wave and widely tunable multiple harmonic generation on a silicon chip.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef] [PubMed]
  2. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nat. Photonics 2, 35–38 (2007).
    [CrossRef]
  3. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008).
    [CrossRef] [PubMed]
  4. H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
    [CrossRef]
  5. T. Carmon, and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
    [CrossRef]
  6. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  7. R. Boyd, Nonlinear Optics (Academic Press, California, 1992).
  8. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [CrossRef] [PubMed]
  9. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
    [CrossRef] [PubMed]
  10. O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12, 829–834 (2004).
    [CrossRef] [PubMed]
  11. A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5 μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12, 1611–1621 (2004).
    [CrossRef] [PubMed]
  12. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14, 5524–5534 (2006).
    [CrossRef] [PubMed]
  13. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultra-low threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [CrossRef] [PubMed]
  14. A. Liu, H. Rong, O. Cohen, M. Paniccia, and D. Hak, “Net optical gain in low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 112, 4261–4267 (2004).
    [CrossRef]
  15. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
    [CrossRef] [PubMed]
  16. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–209 (2009).
    [CrossRef]
  17. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in silicon photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  18. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2006).
    [CrossRef]
  19. L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
    [CrossRef]
  20. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [CrossRef] [PubMed]
  21. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [CrossRef]
  22. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
    [CrossRef]
  23. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [CrossRef]
  24. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007).
    [CrossRef] [PubMed]
  25. M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frederick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
    [CrossRef]
  26. D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
    [CrossRef]
  27. S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultra-high Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
    [CrossRef] [PubMed]
  28. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vuckovic, “Second-harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
    [CrossRef]
  29. M. Falasconi, L. C. Andreani, A. M. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
    [CrossRef]
  30. T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, and G. Mattei, “Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals,” Appl. Phys. Lett. 81, 2725 (2002).
    [CrossRef]
  31. P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three dimensional photonic crystals,” Phys. Rev. Lett. 92, 083903 (2004).
    [CrossRef] [PubMed]
  32. M. G. Martemyanov, E. M. Kim, T. V. Dolgova, A. A. Fedyanin, and O. A. Aktsipetrov, “Third-harmonic generation in silicon photonic crystals and microcavities,” Phys. Rev. B 70, 073311 (2004).
    [CrossRef]
  33. C. Comaschi, G. Vecchi, A. M. Malvezzi, M. Patrini, G. Guizzetti, M. Liscidini, L. C. Andreani, D. Peyrade, and Y. Chen, “Enhanced third-harmonic reflection and diffraction in silicon-on-insulator photonic waveguides,” Appl. Phys. B 81, 305–311 (2005).
    [CrossRef]
  34. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813 (1968).
    [CrossRef]
  35. J. A. Litwin, J. E. Sipe, and H. M. van Driel, “Picosecond and nanosecond second-harmonic generation from centrosymmetric semiconductors,” Phys. Rev. B 31, 5543 (1985).
    [CrossRef]
  36. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254 (1986).
    [CrossRef]
  37. J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129 (1987).
    [CrossRef]
  38. R. Jones, H. Rong, A. Liu, A. W. Fang, and M. J. Paniccia, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
    [CrossRef] [PubMed]
  39. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]
  40. A. Witvrouwa, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, and K. Baert, “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE 4174, 130–141 (2000).
    [CrossRef]
  41. N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
    [CrossRef]
  42. M. Toishi, D. Englund, A. Faraon, and J. Vuckovic, “High-brightness single photon source from a quantum dot in a directional emission nanocavity,” Opt. Express 17, 14618–14626 (2009).
    [CrossRef] [PubMed]
  43. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
    [CrossRef] [PubMed]
  44. The 3D FDTD simulations shown in this work have been performed with commercial software from Lumerical Solutions Inc.
  45. L. C. Andreani, D. Gerace, and M. Agio, “Gap maps, diffraction losses, and exciton-polaritons in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 2, 103–110 (2004).
    [CrossRef]
  46. D. Gerace, and L. C. Andreani, “Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 3, 120–128 (2005).
    [CrossRef]
  47. M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederic, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009).
    [CrossRef]
  48. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
    [CrossRef]
  49. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
    [CrossRef] [PubMed]
  50. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
    [CrossRef] [PubMed]
  51. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
    [CrossRef]
  52. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
    [CrossRef]

2010

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[CrossRef]

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[CrossRef] [PubMed]

2009

M. Toishi, D. Englund, A. Faraon, and J. Vuckovic, “High-brightness single photon source from a quantum dot in a directional emission nanocavity,” Opt. Express 17, 14618–14626 (2009).
[CrossRef] [PubMed]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vuckovic, “Second-harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–209 (2009).
[CrossRef]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederic, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009).
[CrossRef]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[CrossRef]

2008

2007

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frederick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[CrossRef]

T. Carmon, and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

2006

2005

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[CrossRef] [PubMed]

R. Jones, H. Rong, A. Liu, A. W. Fang, and M. J. Paniccia, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

D. Gerace, and L. C. Andreani, “Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 3, 120–128 (2005).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

C. Comaschi, G. Vecchi, A. M. Malvezzi, M. Patrini, G. Guizzetti, M. Liscidini, L. C. Andreani, D. Peyrade, and Y. Chen, “Enhanced third-harmonic reflection and diffraction in silicon-on-insulator photonic waveguides,” Appl. Phys. B 81, 305–311 (2005).
[CrossRef]

2004

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three dimensional photonic crystals,” Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef] [PubMed]

M. G. Martemyanov, E. M. Kim, T. V. Dolgova, A. A. Fedyanin, and O. A. Aktsipetrov, “Third-harmonic generation in silicon photonic crystals and microcavities,” Phys. Rev. B 70, 073311 (2004).
[CrossRef]

L. C. Andreani, D. Gerace, and M. Agio, “Gap maps, diffraction losses, and exciton-polaritons in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 2, 103–110 (2004).
[CrossRef]

A. Liu, H. Rong, O. Cohen, M. Paniccia, and D. Hak, “Net optical gain in low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 112, 4261–4267 (2004).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12, 829–834 (2004).
[CrossRef] [PubMed]

A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5 μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12, 1611–1621 (2004).
[CrossRef] [PubMed]

2003

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

2002

T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, and G. Mattei, “Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals,” Appl. Phys. Lett. 81, 2725 (2002).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultra-low threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[CrossRef] [PubMed]

2001

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in silicon photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

M. Falasconi, L. C. Andreani, A. M. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[CrossRef]

2000

A. Witvrouwa, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, and K. Baert, “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE 4174, 130–141 (2000).
[CrossRef]

1987

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129 (1987).
[CrossRef]

1986

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254 (1986).
[CrossRef]

1985

J. A. Litwin, J. E. Sipe, and H. M. van Driel, “Picosecond and nanosecond second-harmonic generation from centrosymmetric semiconductors,” Phys. Rev. B 31, 5543 (1985).
[CrossRef]

1968

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813 (1968).
[CrossRef]

Aers, G. C.

M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederic, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009).
[CrossRef]

Agio, M.

L. C. Andreani, D. Gerace, and M. Agio, “Gap maps, diffraction losses, and exciton-polaritons in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 2, 103–110 (2004).
[CrossRef]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Aktsipetrov, O. A.

M. G. Martemyanov, E. M. Kim, T. V. Dolgova, A. A. Fedyanin, and O. A. Aktsipetrov, “Third-harmonic generation in silicon photonic crystals and microcavities,” Phys. Rev. B 70, 073311 (2004).
[CrossRef]

T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, and G. Mattei, “Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals,” Appl. Phys. Lett. 81, 2725 (2002).
[CrossRef]

Andreani, L. C.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[CrossRef] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[CrossRef]

D. Gerace, and L. C. Andreani, “Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 3, 120–128 (2005).
[CrossRef]

C. Comaschi, G. Vecchi, A. M. Malvezzi, M. Patrini, G. Guizzetti, M. Liscidini, L. C. Andreani, D. Peyrade, and Y. Chen, “Enhanced third-harmonic reflection and diffraction in silicon-on-insulator photonic waveguides,” Appl. Phys. B 81, 305–311 (2005).
[CrossRef]

L. C. Andreani, D. Gerace, and M. Agio, “Gap maps, diffraction losses, and exciton-polaritons in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 2, 103–110 (2004).
[CrossRef]

M. Falasconi, L. C. Andreani, A. M. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[CrossRef]

Asano, T.

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

Baert, K.

A. Witvrouwa, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, and K. Baert, “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE 4174, 130–141 (2000).
[CrossRef]

Baets, R.

Beckx, S.

Belotti, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[CrossRef]

Bender, H.

A. Witvrouwa, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, and K. Baert, “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE 4174, 130–141 (2000).
[CrossRef]

Benisty, H.

Bermel, P.

Bienstman, P.

Bloembergen, N.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813 (1968).
[CrossRef]

Bogaerts, W.

Bondarenko, O.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[CrossRef]

Boyd, R. W.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three dimensional photonic crystals,” Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef] [PubMed]

Boyraz, O.

Bravo-Abad, J.

Carmon, T.

T. Carmon, and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
[CrossRef]

Chang, R. K.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813 (1968).
[CrossRef]

Chen, W.

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254 (1986).
[CrossRef]

Chen, X.

Chen, Y.

C. Comaschi, G. Vecchi, A. M. Malvezzi, M. Patrini, G. Guizzetti, M. Liscidini, L. C. Andreani, D. Peyrade, and Y. Chen, “Enhanced third-harmonic reflection and diffraction in silicon-on-insulator photonic waveguides,” Appl. Phys. B 81, 305–311 (2005).
[CrossRef]

Cheung, I. W.

M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederic, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009).
[CrossRef]

Chong, H.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

Cohen, O.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

A. Liu, H. Rong, O. Cohen, M. Paniccia, and D. Hak, “Net optical gain in low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 112, 4261–4267 (2004).
[CrossRef]

Comaschi, C.

C. Comaschi, G. Vecchi, A. M. Malvezzi, M. Patrini, G. Guizzetti, M. Liscidini, L. C. Andreani, D. Peyrade, and Y. Chen, “Enhanced third-harmonic reflection and diffraction in silicon-on-insulator photonic waveguides,” Appl. Phys. B 81, 305–311 (2005).
[CrossRef]

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

Combrié, S.

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultra-high Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
[CrossRef] [PubMed]

Coquillat, D.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–209 (2009).
[CrossRef]

Cowan, A. R.

Dalacu, D.

M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederic, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009).
[CrossRef]

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frederick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

De La Rue, R. M.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

De Moor, P.

A. Witvrouwa, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, and K. Baert, “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE 4174, 130–141 (2000).
[CrossRef]

De Rossi, A.

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultra-high Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).
[CrossRef] [PubMed]

Dolgova, T. V.

M. G. Martemyanov, E. M. Kim, T. V. Dolgova, A. A. Fedyanin, and O. A. Aktsipetrov, “Third-harmonic generation in silicon photonic crystals and microcavities,” Phys. Rev. B 70, 073311 (2004).
[CrossRef]

T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, and G. Mattei, “Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals,” Appl. Phys. Lett. 81, 2725 (2002).
[CrossRef]

Du Bois, B.

A. Witvrouwa, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, and K. Baert, “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE 4174, 130–141 (2000).
[CrossRef]

Dulkeith, E.

Dumon, P.

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–209 (2009).
[CrossRef]

Englund, D.

Fainman, Y.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[CrossRef]

Falasconi, M.

M. Falasconi, L. C. Andreani, A. M. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[CrossRef]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

Fang, A. W.

Faraon, A.

Fedyanin, A. A.

M. G. Martemyanov, E. M. Kim, T. V. Dolgova, A. A. Fedyanin, and O. A. Aktsipetrov, “Third-harmonic generation in silicon photonic crystals and microcavities,” Phys. Rev. B 70, 073311 (2004).
[CrossRef]

T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, and G. Mattei, “Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals,” Appl. Phys. Lett. 81, 2725 (2002).
[CrossRef]

Feng, L.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[CrossRef]

Foster, M. A.

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Frederic, S.

M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederic, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009).
[CrossRef]

Frederick, S.

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frederick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

Fukuda, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Gaeta, A. L.

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Galli, M.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[CrossRef] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[CrossRef]

Gerace, D.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[CrossRef] [PubMed]

D. Gerace, and L. C. Andreani, “Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 3, 120–128 (2005).
[CrossRef]

L. C. Andreani, D. Gerace, and M. Agio, “Gap maps, diffraction losses, and exciton-polaritons in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 2, 103–110 (2004).
[CrossRef]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–209 (2009).
[CrossRef]

Guizzetti, G.

C. Comaschi, G. Vecchi, A. M. Malvezzi, M. Patrini, G. Guizzetti, M. Liscidini, L. C. Andreani, D. Peyrade, and Y. Chen, “Enhanced third-harmonic reflection and diffraction in silicon-on-insulator photonic waveguides,” Appl. Phys. B 81, 305–311 (2005).
[CrossRef]

Guyot-Sionnest, P.

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254 (1986).
[CrossRef]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

A. Liu, H. Rong, O. Cohen, M. Paniccia, and D. Hak, “Net optical gain in low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 112, 4261–4267 (2004).
[CrossRef]

Hatami, F.

Indukuri, T.

Inokawa, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Itabashi, S.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Jalali, B.

Jha, S. S.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813 (1968).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Jones, R.

Kim, E. M.

M. G. Martemyanov, E. M. Kim, T. V. Dolgova, A. A. Fedyanin, and O. A. Aktsipetrov, “Third-harmonic generation in silicon photonic crystals and microcavities,” Phys. Rev. B 70, 073311 (2004).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultra-low threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[CrossRef] [PubMed]

Kira, G.

Krauss, T. F.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[CrossRef] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–209 (2009).
[CrossRef]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

Kuo, Y.-H.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[CrossRef]

Kuramochi, E.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Le Vassor d’Yerville, M.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

Lee, C. H.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813 (1968).
[CrossRef]

Lepeshkin, N. N.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three dimensional photonic crystals,” Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef] [PubMed]

Lin, Z.

Lipson, M.

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Liscidini, M.

C. Comaschi, G. Vecchi, A. M. Malvezzi, M. Patrini, G. Guizzetti, M. Liscidini, L. C. Andreani, D. Peyrade, and Y. Chen, “Enhanced third-harmonic reflection and diffraction in silicon-on-insulator photonic waveguides,” Appl. Phys. B 81, 305–311 (2005).
[CrossRef]

Litwin, J. A.

J. A. Litwin, J. E. Sipe, and H. M. van Driel, “Picosecond and nanosecond second-harmonic generation from centrosymmetric semiconductors,” Phys. Rev. B 31, 5543 (1985).
[CrossRef]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

R. Jones, H. Rong, A. Liu, A. W. Fang, and M. J. Paniccia, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[CrossRef] [PubMed]

A. Liu, H. Rong, O. Cohen, M. Paniccia, and D. Hak, “Net optical gain in low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 112, 4261–4267 (2004).
[CrossRef]

Lomakin, V.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[CrossRef]

Luyssaert, B.

Maidykovski, A. I.

T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, and G. Mattei, “Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals,” Appl. Phys. Lett. 81, 2725 (2002).
[CrossRef]

Malvezzi, A. M.

C. Comaschi, G. Vecchi, A. M. Malvezzi, M. Patrini, G. Guizzetti, M. Liscidini, L. C. Andreani, D. Peyrade, and Y. Chen, “Enhanced third-harmonic reflection and diffraction in silicon-on-insulator photonic waveguides,” Appl. Phys. B 81, 305–311 (2005).
[CrossRef]

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

M. Falasconi, L. C. Andreani, A. M. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[CrossRef]

Markowicz, P. P.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three dimensional photonic crystals,” Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef] [PubMed]

Marowsky, G.

T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, and G. Mattei, “Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals,” Appl. Phys. Lett. 81, 2725 (2002).
[CrossRef]

Martemyanov, M. G.

M. G. Martemyanov, E. M. Kim, T. V. Dolgova, A. A. Fedyanin, and O. A. Aktsipetrov, “Third-harmonic generation in silicon photonic crystals and microcavities,” Phys. Rev. B 70, 073311 (2004).
[CrossRef]

T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, and G. Mattei, “Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals,” Appl. Phys. Lett. 81, 2725 (2002).
[CrossRef]

Masselink, W. T.

Mattei, G.

T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, and G. Mattei, “Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals,” Appl. Phys. Lett. 81, 2725 (2002).
[CrossRef]

McCutcheon, M.

M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederic, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009).
[CrossRef]

McCutcheon, M. W.

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frederick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

McIntyre, D.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[CrossRef] [PubMed]

Mizrahi, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[CrossRef]

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–209 (2009).
[CrossRef]

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–209 (2009).
[CrossRef]

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129 (1987).
[CrossRef]

Mulloni, V.

M. Falasconi, L. C. Andreani, A. M. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[CrossRef]

Nezhad, M. P.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[CrossRef]

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Noda, S.

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Notomi, M.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in silicon photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

O’Faolain, L.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[CrossRef] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–209 (2009).
[CrossRef]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

Osgood, R. M.

Paniccia, M.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

A. Liu, H. Rong, O. Cohen, M. Paniccia, and D. Hak, “Net optical gain in low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 112, 4261–4267 (2004).
[CrossRef]

Paniccia, M. J.

Panoiu, N. C.

Patrini, M.

C. Comaschi, G. Vecchi, A. M. Malvezzi, M. Patrini, G. Guizzetti, M. Liscidini, L. C. Andreani, D. Peyrade, and Y. Chen, “Enhanced third-harmonic reflection and diffraction in silicon-on-insulator photonic waveguides,” Appl. Phys. B 81, 305–311 (2005).
[CrossRef]

M. Falasconi, L. C. Andreani, A. M. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[CrossRef]

Pavesi, L.

M. Falasconi, L. C. Andreani, A. M. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[CrossRef]

Peyrade, D.

C. Comaschi, G. Vecchi, A. M. Malvezzi, M. Patrini, G. Guizzetti, M. Liscidini, L. C. Andreani, D. Peyrade, and Y. Chen, “Enhanced third-harmonic reflection and diffraction in silicon-on-insulator photonic waveguides,” Appl. Phys. B 81, 305–311 (2005).
[CrossRef]

Poole, P. J.

M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederic, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009).
[CrossRef]

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frederick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

Portalupi, S. L.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[CrossRef] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[CrossRef]

Prasad, P. N.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three dimensional photonic crystals,” Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef] [PubMed]

Pudavar, H.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three dimensional photonic crystals,” Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef] [PubMed]

Raday, O.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[CrossRef]

Reardon, C.

Rieger, G. W.

M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederic, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009).
[CrossRef]

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frederick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5 μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12, 1611–1621 (2004).
[CrossRef] [PubMed]

Rivoire, K.

Rodriguez, A.

Rong, H.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

R. Jones, H. Rong, A. Liu, A. W. Fang, and M. J. Paniccia, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[CrossRef] [PubMed]

A. Liu, H. Rong, O. Cohen, M. Paniccia, and D. Hak, “Net optical gain in low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 112, 4261–4267 (2004).
[CrossRef]

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Shen, Y. R.

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254 (1986).
[CrossRef]

Shinojima, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Shinya, A.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in silicon photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Sih, V.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[CrossRef]

Simic, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[CrossRef]

Sipe, J. E.

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129 (1987).
[CrossRef]

J. A. Litwin, J. E. Sipe, and H. M. van Driel, “Picosecond and nanosecond second-harmonic generation from centrosymmetric semiconductors,” Phys. Rev. B 31, 5543 (1985).
[CrossRef]

Slutsky, B.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[CrossRef]

Soljacic, M.

Song, B. S.

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultra-low threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[CrossRef] [PubMed]

Taillaert, D.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in silicon photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in silicon photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Tanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Thoms, S.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

Tiryaki, H.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three dimensional photonic crystals,” Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef] [PubMed]

Toishi, M.

Torres, J.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

Tran, N.-V.-Q.

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Tran, Q. V.

Tsuchizawa, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Turner, A. C.

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Uesugi, T.

Vahala, K. J.

T. Carmon, and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultra-low threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[CrossRef] [PubMed]

Van Campenhout, J.

van Driel, H. M.

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129 (1987).
[CrossRef]

J. A. Litwin, J. E. Sipe, and H. M. van Driel, “Picosecond and nanosecond second-harmonic generation from centrosymmetric semiconductors,” Phys. Rev. B 31, 5543 (1985).
[CrossRef]

Van Hoof, C.

A. Witvrouwa, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, and K. Baert, “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE 4174, 130–141 (2000).
[CrossRef]

Van Thourhout, D.

Vecchi, G.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

C. Comaschi, G. Vecchi, A. M. Malvezzi, M. Patrini, G. Guizzetti, M. Liscidini, L. C. Andreani, D. Peyrade, and Y. Chen, “Enhanced third-harmonic reflection and diffraction in silicon-on-insulator photonic waveguides,” Appl. Phys. B 81, 305–311 (2005).
[CrossRef]

Verbist, A.

A. Witvrouwa, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, and K. Baert, “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE 4174, 130–141 (2000).
[CrossRef]

Vlasov, Y. A.

Vuckovic, J.

Watanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–209 (2009).
[CrossRef]

Wiaux, V.

Williams, R.

M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederic, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009).
[CrossRef]

Williams, R. L.

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frederick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

Witvrouwa, A.

A. Witvrouwa, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, and K. Baert, “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE 4174, 130–141 (2000).
[CrossRef]

Xu, S.

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[CrossRef]

Yakovlev, V. A.

T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, and G. Mattei, “Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals,” Appl. Phys. Lett. 81, 2725 (2002).
[CrossRef]

Yamada, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in silicon photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in silicon photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Young, J. F.

M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederic, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009).
[CrossRef]

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frederick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5 μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12, 1611–1621 (2004).
[CrossRef] [PubMed]

Yuan, X.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

Appl. Phys. B

C. Comaschi, G. Vecchi, A. M. Malvezzi, M. Patrini, G. Guizzetti, M. Liscidini, L. C. Andreani, D. Peyrade, and Y. Chen, “Enhanced third-harmonic reflection and diffraction in silicon-on-insulator photonic waveguides,” Appl. Phys. B 81, 305–311 (2005).
[CrossRef]

Appl. Phys. Lett.

T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, and G. Mattei, “Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals,” Appl. Phys. Lett. 81, 2725 (2002).
[CrossRef]

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederic, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009).
[CrossRef]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[CrossRef]

Electron. Lett.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006).
[CrossRef]

J. Lightwave Technol.

J. Phys. D

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

Nat. Mater.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Nat. Photonics

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–209 (2009).
[CrossRef]

H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[CrossRef]

Nat. Phys.

T. Carmon, and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007).
[CrossRef]

Nature

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultra-low threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express

A. Liu, H. Rong, O. Cohen, M. Paniccia, and D. Hak, “Net optical gain in low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 112, 4261–4267 (2004).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[CrossRef] [PubMed]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006).
[CrossRef] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14, 5524–5534 (2006).
[CrossRef] [PubMed]

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008).
[CrossRef] [PubMed]

O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12, 829–834 (2004).
[CrossRef] [PubMed]

A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5 μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12, 1611–1621 (2004).
[CrossRef] [PubMed]

R. Jones, H. Rong, A. Liu, A. W. Fang, and M. J. Paniccia, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005).
[CrossRef] [PubMed]

M. Toishi, D. Englund, A. Faraon, and J. Vuckovic, “High-brightness single photon source from a quantum dot in a directional emission nanocavity,” Opt. Express 17, 14618–14626 (2009).
[CrossRef] [PubMed]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vuckovic, “Second-harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[CrossRef]

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Photon. Nanostruct. Fundam. Appl.

L. C. Andreani, D. Gerace, and M. Agio, “Gap maps, diffraction losses, and exciton-polaritons in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 2, 103–110 (2004).
[CrossRef]

D. Gerace, and L. C. Andreani, “Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 3, 120–128 (2005).
[CrossRef]

Phys. Rev.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813 (1968).
[CrossRef]

Phys. Rev. B

J. A. Litwin, J. E. Sipe, and H. M. van Driel, “Picosecond and nanosecond second-harmonic generation from centrosymmetric semiconductors,” Phys. Rev. B 31, 5543 (1985).
[CrossRef]

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254 (1986).
[CrossRef]

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129 (1987).
[CrossRef]

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frederick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

M. G. Martemyanov, E. M. Kim, T. V. Dolgova, A. A. Fedyanin, and O. A. Aktsipetrov, “Third-harmonic generation in silicon photonic crystals and microcavities,” Phys. Rev. B 70, 073311 (2004).
[CrossRef]

Phys. Rev. Lett.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three dimensional photonic crystals,” Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in silicon photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Proc. SPIE

A. Witvrouwa, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, and K. Baert, “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE 4174, 130–141 (2000).
[CrossRef]

Surf. Sci.

M. Falasconi, L. C. Andreani, A. M. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[CrossRef]

Other

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

R. Boyd, Nonlinear Optics (Academic Press, California, 1992).

The 3D FDTD simulations shown in this work have been performed with commercial software from Lumerical Solutions Inc.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The system under consideration. (a) SEM image of the fabricated device; the enlarged holes around the cavity are marked in yellow. (b) Far-field intensity profile calculated for the cavity shown in (a) by 3D FDTD simulation. (c) Sketch of the SHG and THG emission from our PhC cavity.

Fig. 2
Fig. 2

Experimental demonstration of simultaneous SHG and THG. (a) Resonant scattering spectrum (left) of a PhC nanocavity with fundamental mode at λc = 1353.6 nm (pump wavelength). SHG and THG emission spectra (right) at red and blue wavelengths λSH = 676.8 nm and λTH = 451.2 nm, respectively. (b) Resonant scattering spectrum (left) of a PhC nanocavity with fundamental mode at λc = 1575.1 nm (pump wavelength). SHG and THG emission spectra (right) at deep-red and green wavelengths λSH = 787.5 nm and λTH = 525 nm, respectively.

Fig. 5
Fig. 5

Q-factor and lineshape scalings. (a) Upper panel, Q-factor (right axis) and corresponding coupling efficiency ηcav (left axis) of the far-field modified PhC nanocavities as a function of the holes enlargement Δr. Lower panel, the product cav. (b) SHG and THG emission intensity vs. Q-factor for the same series of PhC cavities. The HG signals peak around Q ∼ 3 × 104, which corresponds to the cavity with Δr = 6 nm in (a) that has the highest cav product. (c) Normalized SHG and THG emission intensity (see text) as a function of the cavity Q factor showing clear Q2 and Q3 scaling, respectively. (d) Resonant scattering spectrum of a PhC nanocavity with Q = 5.2 × 103 (black dots), and best-fit to a Lorentzian lineshape (black line, L). SHG and THG spectra recorded while scanning the pump laser across the cavity resonance (red and green dots, respectively). Red and green lines interpolating the SHG and THG data are the squared (L2) and cubed (L3) Lorentzians, respectively.

Fig. 3
Fig. 3

SH and TH near- and far-field emission. (a),(b) Ex and Ey components of the calculated electric field inside the PhC cavity at the resonance frequency. (c),(d) Spectrally filtered optical image of the SHG and THG emission taken with a high sensitivity Si CCD, respectively. (e),(f) Corresponding experimental Fourier images (see methods) showing the polar far-field emission profile of the SHG and THG light. (g),(h) Calculated far-field patterns (see methods).

Fig. 4
Fig. 4

Power scaling and conversion efficiency. (a) SHG and THG emission intensity versus coupled pump power for a PhC nanocavity with coupling efficiency 0.2 and quality factor Q = 5.2 × 103, at fixed pump wavelength. (b) SHG and THG emission intensity versus coupled pump power for a PhC nanocavity with coupling efficiency 0.12 and quality factor Q = 3.2 × 104. Pump wavelength has been varied for increasing pump power to account for thermo-optical induced red-shift of the cavity mode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P x , y ( 3 ω c ) = 3 χ 1212 ( 3 ) | E ( ω c ) | 2 E x , y ( ω c ) ,
P y ( 2 ω c ) = χ 311 ( 2 ) E x 2 ( ω c ) .

Metrics