R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancment cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).
[Crossref]
P.J. Thomas, M.H. Dunn, D.J.M. Stothard, D.A. Walsh, and C.J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” submitted to J. Mod. Opt. (2010).
[PubMed]
A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair souce based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[Crossref]
M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommuncation-band source of degenerate entangled photons,” Opt. Lett. 35, 802–804 (2010).
[Crossref]
[PubMed]
T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express 17(14), 12019–12030 (2009).
[Crossref]
[PubMed]
M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102(6), 063603 (2009).
[Crossref]
[PubMed]
O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314 (2008).
[Crossref]
H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express 16(17), 12460–12468 (2008).
[Crossref]
[PubMed]
H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15(12), 7853–7862 (2007).
[Crossref]
[PubMed]
A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15(23), 15377–15386 (2007).
[Crossref]
[PubMed]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
S. Odate, A. Yoshizawa, and H. Tsuchida, “Polarisation-entangled photon-pair source at 1550 nm using 1 mm-long PPLN waveguide in fibre-loop configuration,” Electron. Lett. 43(24), 1376–1377 (2007).
[Crossref]
T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73(1), 012316 (2006).
[Crossref]
C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express 14(15), 6936–6941 (2006).
[Crossref]
[PubMed]
J. Chen, K. F. Lee, C. Liang, and P. Kumar, “Fiber-based telecom-band degenerate-frequency source of entangled photon pairs,” Opt. Lett. 31(18), 2798–2800 (2006).
[Crossref]
[PubMed]
X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref]
[PubMed]
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601-1-4 (2005).
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching [Phys. Rev. Lett. 94, 083601 (2005)],” Phys. Rev. Lett. 94(16), 169903–1 (2005).
[Crossref]
C. E. Kuklewicz, M. Fiorentino, G. Messin, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]
M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2004).
[Crossref]
A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003).
[Crossref]
V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66(4), 043813 (2002).
[Crossref]
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]
W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B 18(4), 524–533 (2001).
[Crossref]
J. Volz, C. Kurtsiefer, and H. Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79(6), 869–871 (2001).
[Crossref]
T. C. Ralph, A. G. White, W. J. Munro, and G. J. Milburn, “Simple scheme for efficient linear optics quantum gates,” Phys. Rev. A 65(1), 012314 (2001).
[Crossref]
T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]
M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarisation-entangled photon pairs,” Opt. Commun. 183(1-4), 133–137 (2000).
[Crossref]
D. Gottesman and I. L. Chuang, “Demonstrating the viabilty of universal quantum computation using teleportation and single-qubit operations,” Nature 402(6760), 390–393 (1999).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]
[PubMed]
C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref]
[PubMed]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601-1-4 (2005).
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching [Phys. Rev. Lett. 94, 083601 (2005)],” Phys. Rev. Lett. 94(16), 169903–1 (2005).
[Crossref]
W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B 18(4), 524–533 (2001).
[Crossref]
A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair souce based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102(6), 063603 (2009).
[Crossref]
[PubMed]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15(12), 7853–7862 (2007).
[Crossref]
[PubMed]
C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express 14(15), 6936–6941 (2006).
[Crossref]
[PubMed]
J. Chen, K. F. Lee, C. Liang, and P. Kumar, “Fiber-based telecom-band degenerate-frequency source of entangled photon pairs,” Opt. Lett. 31(18), 2798–2800 (2006).
[Crossref]
[PubMed]
D. Gottesman and I. L. Chuang, “Demonstrating the viabilty of universal quantum computation using teleportation and single-qubit operations,” Nature 402(6760), 390–393 (1999).
[Crossref]
P.J. Thomas, M.H. Dunn, D.J.M. Stothard, D.A. Walsh, and C.J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” submitted to J. Mod. Opt. (2010).
[PubMed]
J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
P.J. Thomas, M.H. Dunn, D.J.M. Stothard, D.A. Walsh, and C.J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” submitted to J. Mod. Opt. (2010).
[PubMed]
T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73(1), 012316 (2006).
[Crossref]
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601-1-4 (2005).
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching [Phys. Rev. Lett. 94, 083601 (2005)],” Phys. Rev. Lett. 94(16), 169903–1 (2005).
[Crossref]
M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2004).
[Crossref]
C. E. Kuklewicz, M. Fiorentino, G. Messin, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66(4), 043813 (2002).
[Crossref]
D. Gottesman and I. L. Chuang, “Demonstrating the viabilty of universal quantum computation using teleportation and single-qubit operations,” Nature 402(6760), 390–393 (1999).
[Crossref]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair souce based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[Crossref]
J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]
C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref]
[PubMed]
J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair souce based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[Crossref]
T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]
A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15(23), 15377–15386 (2007).
[Crossref]
[PubMed]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003).
[Crossref]
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601-1-4 (2005).
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching [Phys. Rev. Lett. 94, 083601 (2005)],” Phys. Rev. Lett. 94(16), 169903–1 (2005).
[Crossref]
R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancment cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).
[Crossref]
T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73(1), 012316 (2006).
[Crossref]
M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102(6), 063603 (2009).
[Crossref]
[PubMed]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancment cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).
[Crossref]
M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2004).
[Crossref]
C. E. Kuklewicz, M. Fiorentino, G. Messin, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]
M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommuncation-band source of degenerate entangled photons,” Opt. Lett. 35, 802–804 (2010).
[Crossref]
[PubMed]
J. Chen, K. F. Lee, C. Liang, and P. Kumar, “Fiber-based telecom-band degenerate-frequency source of entangled photon pairs,” Opt. Lett. 31(18), 2798–2800 (2006).
[Crossref]
[PubMed]
C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express 14(15), 6936–6941 (2006).
[Crossref]
[PubMed]
X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref]
[PubMed]
J. Volz, C. Kurtsiefer, and H. Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79(6), 869–871 (2001).
[Crossref]
O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314 (2008).
[Crossref]
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601-1-4 (2005).
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching [Phys. Rev. Lett. 94, 083601 (2005)],” Phys. Rev. Lett. 94(16), 169903–1 (2005).
[Crossref]
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]
[PubMed]
C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express 14(15), 6936–6941 (2006).
[Crossref]
[PubMed]
J. Chen, K. F. Lee, C. Liang, and P. Kumar, “Fiber-based telecom-band degenerate-frequency source of entangled photon pairs,” Opt. Lett. 31(18), 2798–2800 (2006).
[Crossref]
[PubMed]
X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref]
[PubMed]
J. Chen, K. F. Lee, C. Liang, and P. Kumar, “Fiber-based telecom-band degenerate-frequency source of entangled photon pairs,” Opt. Lett. 31(18), 2798–2800 (2006).
[Crossref]
[PubMed]
C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express 14(15), 6936–6941 (2006).
[Crossref]
[PubMed]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66(4), 043813 (2002).
[Crossref]
C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref]
[PubMed]
A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair souce based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]
[PubMed]
C. E. Kuklewicz, M. Fiorentino, G. Messin, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]
M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2004).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancment cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).
[Crossref]
T. C. Ralph, A. G. White, W. J. Munro, and G. J. Milburn, “Simple scheme for efficient linear optics quantum gates,” Phys. Rev. A 65(1), 012314 (2001).
[Crossref]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]
T. C. Ralph, A. G. White, W. J. Munro, and G. J. Milburn, “Simple scheme for efficient linear optics quantum gates,” Phys. Rev. A 65(1), 012314 (2001).
[Crossref]
M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarisation-entangled photon pairs,” Opt. Commun. 183(1-4), 133–137 (2000).
[Crossref]
S. Odate, A. Yoshizawa, and H. Tsuchida, “Polarisation-entangled photon-pair source at 1550 nm using 1 mm-long PPLN waveguide in fibre-loop configuration,” Electron. Lett. 43(24), 1376–1377 (2007).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair souce based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[Crossref]
C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref]
[PubMed]
R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancment cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]
H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15(12), 7853–7862 (2007).
[Crossref]
[PubMed]
A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15(23), 15377–15386 (2007).
[Crossref]
[PubMed]
T. C. Ralph, A. G. White, W. J. Munro, and G. J. Milburn, “Simple scheme for efficient linear optics quantum gates,” Phys. Rev. A 65(1), 012314 (2001).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102(6), 063603 (2009).
[Crossref]
[PubMed]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]
[PubMed]
C. E. Kuklewicz, M. Fiorentino, G. Messin, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]
M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2004).
[Crossref]
V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66(4), 043813 (2002).
[Crossref]
X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref]
[PubMed]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]
[PubMed]
J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]
W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B 18(4), 524–533 (2001).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair souce based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[Crossref]
P.J. Thomas, M.H. Dunn, D.J.M. Stothard, D.A. Walsh, and C.J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” submitted to J. Mod. Opt. (2010).
[PubMed]
A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair souce based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[Crossref]
P.J. Thomas, M.H. Dunn, D.J.M. Stothard, D.A. Walsh, and C.J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” submitted to J. Mod. Opt. (2010).
[PubMed]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express 16(17), 12460–12468 (2008).
[Crossref]
[PubMed]
S. Odate, A. Yoshizawa, and H. Tsuchida, “Polarisation-entangled photon-pair source at 1550 nm using 1 mm-long PPLN waveguide in fibre-loop configuration,” Electron. Lett. 43(24), 1376–1377 (2007).
[Crossref]
A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003).
[Crossref]
R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancment cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
J. Volz, C. Kurtsiefer, and H. Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79(6), 869–871 (2001).
[Crossref]
X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref]
[PubMed]
P.J. Thomas, M.H. Dunn, D.J.M. Stothard, D.A. Walsh, and C.J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” submitted to J. Mod. Opt. (2010).
[PubMed]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancment cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
J. Volz, C. Kurtsiefer, and H. Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79(6), 869–871 (2001).
[Crossref]
M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarisation-entangled photon pairs,” Opt. Commun. 183(1-4), 133–137 (2000).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]
[PubMed]
T. C. Ralph, A. G. White, W. J. Munro, and G. J. Milburn, “Simple scheme for efficient linear optics quantum gates,” Phys. Rev. A 65(1), 012314 (2001).
[Crossref]
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]
R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancment cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).
[Crossref]
T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express 17(14), 12019–12030 (2009).
[Crossref]
[PubMed]
O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314 (2008).
[Crossref]
T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73(1), 012316 (2006).
[Crossref]
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601-1-4 (2005).
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching [Phys. Rev. Lett. 94, 083601 (2005)],” Phys. Rev. Lett. 94(16), 169903–1 (2005).
[Crossref]
M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2004).
[Crossref]
V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66(4), 043813 (2002).
[Crossref]
H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express 16(17), 12460–12468 (2008).
[Crossref]
[PubMed]
S. Odate, A. Yoshizawa, and H. Tsuchida, “Polarisation-entangled photon-pair source at 1550 nm using 1 mm-long PPLN waveguide in fibre-loop configuration,” Electron. Lett. 43(24), 1376–1377 (2007).
[Crossref]
A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003).
[Crossref]
A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15(23), 15377–15386 (2007).
[Crossref]
[PubMed]
H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15(12), 7853–7862 (2007).
[Crossref]
[PubMed]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]
[PubMed]
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical Resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]
J. Volz, C. Kurtsiefer, and H. Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79(6), 869–871 (2001).
[Crossref]
A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003).
[Crossref]
S. Odate, A. Yoshizawa, and H. Tsuchida, “Polarisation-entangled photon-pair source at 1550 nm using 1 mm-long PPLN waveguide in fibre-loop configuration,” Electron. Lett. 43(24), 1376–1377 (2007).
[Crossref]
P.J. Thomas, M.H. Dunn, D.J.M. Stothard, D.A. Walsh, and C.J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” submitted to J. Mod. Opt. (2010).
[PubMed]
W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B 18(4), 524–533 (2001).
[Crossref]
A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair souce based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010).
[Crossref]
R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancment cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010).
[Crossref]
R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]
D. Gottesman and I. L. Chuang, “Demonstrating the viabilty of universal quantum computation using teleportation and single-qubit operations,” Nature 402(6760), 390–393 (1999).
[Crossref]
M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarisation-entangled photon pairs,” Opt. Commun. 183(1-4), 133–137 (2000).
[Crossref]
C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express 14(15), 6936–6941 (2006).
[Crossref]
[PubMed]
H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15(12), 7853–7862 (2007).
[Crossref]
[PubMed]
A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15(23), 15377–15386 (2007).
[Crossref]
[PubMed]
H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express 16(17), 12460–12468 (2008).
[Crossref]
[PubMed]
T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express 17(14), 12019–12030 (2009).
[Crossref]
[PubMed]
M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommuncation-band source of degenerate entangled photons,” Opt. Lett. 35, 802–804 (2010).
[Crossref]
[PubMed]
J. Chen, K. F. Lee, C. Liang, and P. Kumar, “Fiber-based telecom-band degenerate-frequency source of entangled photon pairs,” Opt. Lett. 31(18), 2798–2800 (2006).
[Crossref]
[PubMed]
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]
V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66(4), 043813 (2002).
[Crossref]
T. C. Ralph, A. G. White, W. J. Munro, and G. J. Milburn, “Simple scheme for efficient linear optics quantum gates,” Phys. Rev. A 65(1), 012314 (2001).
[Crossref]
T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001).
[Crossref]
C. E. Kuklewicz, M. Fiorentino, G. Messin, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]
M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2004).
[Crossref]
T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73(1), 012316 (2006).
[Crossref]
O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314 (2008).
[Crossref]
P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]
[PubMed]
M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102(6), 063603 (2009).
[Crossref]
[PubMed]
J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601-1-4 (2005).
O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching [Phys. Rev. Lett. 94, 083601 (2005)],” Phys. Rev. Lett. 94(16), 169903–1 (2005).
[Crossref]
C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref]
[PubMed]
X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[Crossref]
[PubMed]
R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, (Addison-Wesley. 1970), Vol 3.
A. K. Ekert, “Quantum cryptography and Bell's theorem.” in Quantum Measurements in Optics: Proceedings of a NATO Advanced Research Workshop on Quantum Measurements in Optics, P. Tombesi and D.F. Walls, Eds. (Plenum Press, New York, 1992), pp. 413–418.