Abstract

Nanoparticle-assisted photo-thermal (NAPT) ablation has become a new and attractive modality for the treatment of cancerous tumors. This therapy exploits the passive accumulation of intravenously delivered optically resonant metal nanoparticles into tumors, however, the circulating bioavailability of these particles is often unknown. We present a non-invasive optical device capable of monitoring the circulation of optically resonant gold nanorods. The device, referred to as a pulse photometer, uses the technique of multi-wavelength photoplethysmography. We simultaneously report the circulation of gold nanorods and oximetry for six hours post-injection in mice with no anesthesia and remove the probe when not collecting data. The instrument shows good agreement (R2=0.903, n=30) with ex vivo spectrophotometric analysis of blood samples. The real-time feedback provided has a strong potential for reducing variability and thus improving the efficacy of similar clinical therapies.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
    [CrossRef] [PubMed]
  2. M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008).
    [CrossRef] [PubMed]
  3. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
    [CrossRef] [PubMed]
  4. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
    [CrossRef] [PubMed]
  5. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
    [CrossRef]
  6. H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008).
    [CrossRef]
  7. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
    [CrossRef] [PubMed]
  8. J. H. Park, G. von Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanomaterial system to sensitize, target, and treat tumors,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 981–986 (2010).
    [CrossRef] [PubMed]
  9. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
    [CrossRef] [PubMed]
  10. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
    [CrossRef] [PubMed]
  11. Y. Akiyama, T. Mori, Y. Katayama, and T. Niidome, “The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice,” J. Control. Release 139(1), 81–84 (2009).
    [CrossRef] [PubMed]
  12. W. D. James, L. R. Hirsch, J. L. West, P. D. O’Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radioanal. Nucl. Chem. 271(2), 455–459 (2007).
    [CrossRef]
  13. H. Xie, K. L. Gill-Sharp, and D. P. O’Neal, “Quantitative estimation of gold nanoshell concentrations in whole blood using dynamic light scattering,” Nanomedicine 3(1), 89–94 (2007).
    [CrossRef] [PubMed]
  14. R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
    [CrossRef]
  15. T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, and Y. Niidome, “In vivo monitoring of intravenously injected gold nanorods using near-infrared light,” Small 4(7), 1001–1007 (2008).
    [CrossRef] [PubMed]
  16. G. J. Michalak, G. P. Goodrich, J. A. Schwartz, W. D. James, and D. P. O’Neal, “Murine photoplethysmography for in vivo estimation of vascular gold nanoshell concentration,” J. Biomed. Opt. 15(4), 047007 (2010).
    [CrossRef] [PubMed]
  17. G. J. Michalak, H. A. Anderson, and D. P. O’Neal, “Feasibility of using a two-wavelength photometer to estimate the concentration of circulating near-infrared extinguishing nanoparticles,” J Biomed. Nanotechnol. 6(1), 73–81 (2010).
    [CrossRef] [PubMed]
  18. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4(9), 1689–1692 (2004).
    [CrossRef]
  19. J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit. 3(2), 135–138 (1987).
    [CrossRef] [PubMed]
  20. J. G. Webster, Design of Pulse Oximeters, Chapter 4, pp. 40–55, New York, NY, Taylor and Francis Group, 1997.
  21. K. Yamakoshi and Y. Yamakoshi, “Pulse glucosimetry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt. 11(5), 1–9 (2006).
    [CrossRef]
  22. T. Iijima, T. Aoyagi, Y. Iwao, J. Masuda, M. Fuse, N. Kobayashi, and H. Sankawa, “Cardiac output and circulating blood volume analysis by pulse dye-densitometry,” J. Clin. Monit. 13(2), 81–89 (1997).
    [CrossRef] [PubMed]
  23. T. Imai, C. Mitaka, T. Nosaka, A. Koike, S. Ohki, Y. Isa, and F. Kunimoto, “Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Cr-labeled red blood cells,” Intensive Care Med. 26(9), 1343–1349 (2000).
    [CrossRef] [PubMed]
  24. N. Taguchi, S. Nakagawa, K. Miyasaka, M. Fuse, and T. Aoyagi, “Cardiac output measurement by pulse dye densitometry using three wavelengths,” Pediatr. Crit. Care Med. 5(4), 343–350 (2004).
    [CrossRef] [PubMed]
  25. Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. 94(1Suppl), S26–S30 (2002).
    [PubMed]
  26. T. Aoyagi, M. Fuse, N. Kobayashi, K. Machida, and K. Miyasaka, “Multiwavelength pulse oximetry: theory for the future,” Anesth. Analg. 105(6Suppl), S53–S58 (2007).
    [CrossRef] [PubMed]
  27. J. Kraitl, H. Ewald, and H. Gehring, “An optical device to measure blood components by a photoplethysmographic method,” J. Opt. A, Pure Appl. Opt. 7(6), S318–S324 (2005).
    [CrossRef]
  28. S. J. Barker, J. Curry, D. Redford, and S. Morgan, “Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study,” Anesthesiology 105(5), 892–897 (2006).
    [CrossRef] [PubMed]
  29. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
    [PubMed]
  30. D. K. Sardar and L. B. Levy, “Optical properties of whole blood,” Lasers Med. Sci. 13(2), 106–111 (1998).
    [CrossRef]
  31. W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [CrossRef]
  32. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependant absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 1–4 (2004).
    [CrossRef]
  33. A. C. Guyton, and J. E. Hall, Textbook of Medical Physiology, Chapters 39–40, pp. 491–513, (Philadelphia, PA, Elsevier Saunders, 2006).
  34. S. A. Prahl, “Tabulated Molar Extinction Coefficients of Reduced and Oxygenated Hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html (1998)
  35. A. J. Welch, and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, New York, NY, Plenum Press, 1995.
  36. G. J. Michalak, “In vivo non-invasive monitoring of optically resonant metal nanoparticles using multi-wavelength photoplethysmography,” Dissertation published August 2010.

2010 (3)

J. H. Park, G. von Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanomaterial system to sensitize, target, and treat tumors,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 981–986 (2010).
[CrossRef] [PubMed]

G. J. Michalak, G. P. Goodrich, J. A. Schwartz, W. D. James, and D. P. O’Neal, “Murine photoplethysmography for in vivo estimation of vascular gold nanoshell concentration,” J. Biomed. Opt. 15(4), 047007 (2010).
[CrossRef] [PubMed]

G. J. Michalak, H. A. Anderson, and D. P. O’Neal, “Feasibility of using a two-wavelength photometer to estimate the concentration of circulating near-infrared extinguishing nanoparticles,” J Biomed. Nanotechnol. 6(1), 73–81 (2010).
[CrossRef] [PubMed]

2009 (1)

Y. Akiyama, T. Mori, Y. Katayama, and T. Niidome, “The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice,” J. Control. Release 139(1), 81–84 (2009).
[CrossRef] [PubMed]

2008 (5)

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008).
[CrossRef] [PubMed]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef]

H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008).
[CrossRef]

T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, and Y. Niidome, “In vivo monitoring of intravenously injected gold nanorods using near-infrared light,” Small 4(7), 1001–1007 (2008).
[CrossRef] [PubMed]

2007 (5)

T. Aoyagi, M. Fuse, N. Kobayashi, K. Machida, and K. Miyasaka, “Multiwavelength pulse oximetry: theory for the future,” Anesth. Analg. 105(6Suppl), S53–S58 (2007).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

W. D. James, L. R. Hirsch, J. L. West, P. D. O’Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radioanal. Nucl. Chem. 271(2), 455–459 (2007).
[CrossRef]

H. Xie, K. L. Gill-Sharp, and D. P. O’Neal, “Quantitative estimation of gold nanoshell concentrations in whole blood using dynamic light scattering,” Nanomedicine 3(1), 89–94 (2007).
[CrossRef] [PubMed]

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
[CrossRef]

2006 (3)

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

K. Yamakoshi and Y. Yamakoshi, “Pulse glucosimetry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt. 11(5), 1–9 (2006).
[CrossRef]

S. J. Barker, J. Curry, D. Redford, and S. Morgan, “Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study,” Anesthesiology 105(5), 892–897 (2006).
[CrossRef] [PubMed]

2005 (3)

J. Kraitl, H. Ewald, and H. Gehring, “An optical device to measure blood components by a photoplethysmographic method,” J. Opt. A, Pure Appl. Opt. 7(6), S318–S324 (2005).
[CrossRef]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[CrossRef] [PubMed]

2004 (4)

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4(9), 1689–1692 (2004).
[CrossRef]

N. Taguchi, S. Nakagawa, K. Miyasaka, M. Fuse, and T. Aoyagi, “Cardiac output measurement by pulse dye densitometry using three wavelengths,” Pediatr. Crit. Care Med. 5(4), 343–350 (2004).
[CrossRef] [PubMed]

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependant absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 1–4 (2004).
[CrossRef]

2002 (1)

Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. 94(1Suppl), S26–S30 (2002).
[PubMed]

2000 (1)

T. Imai, C. Mitaka, T. Nosaka, A. Koike, S. Ohki, Y. Isa, and F. Kunimoto, “Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Cr-labeled red blood cells,” Intensive Care Med. 26(9), 1343–1349 (2000).
[CrossRef] [PubMed]

1998 (1)

D. K. Sardar and L. B. Levy, “Optical properties of whole blood,” Lasers Med. Sci. 13(2), 106–111 (1998).
[CrossRef]

1997 (1)

T. Iijima, T. Aoyagi, Y. Iwao, J. Masuda, M. Fuse, N. Kobayashi, and H. Sankawa, “Cardiac output and circulating blood volume analysis by pulse dye-densitometry,” J. Clin. Monit. 13(2), 81–89 (1997).
[CrossRef] [PubMed]

1991 (1)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

1990 (1)

W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

1987 (1)

J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit. 3(2), 135–138 (1987).
[CrossRef] [PubMed]

Aalders, M. C. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependant absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 1–4 (2004).
[CrossRef]

Akiyama, Y.

Y. Akiyama, T. Mori, Y. Katayama, and T. Niidome, “The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice,” J. Control. Release 139(1), 81–84 (2009).
[CrossRef] [PubMed]

T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, and Y. Niidome, “In vivo monitoring of intravenously injected gold nanorods using near-infrared light,” Small 4(7), 1001–1007 (2008).
[CrossRef] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Anderson, H. A.

G. J. Michalak, H. A. Anderson, and D. P. O’Neal, “Feasibility of using a two-wavelength photometer to estimate the concentration of circulating near-infrared extinguishing nanoparticles,” J Biomed. Nanotechnol. 6(1), 73–81 (2010).
[CrossRef] [PubMed]

Aoyagi, T.

T. Aoyagi, M. Fuse, N. Kobayashi, K. Machida, and K. Miyasaka, “Multiwavelength pulse oximetry: theory for the future,” Anesth. Analg. 105(6Suppl), S53–S58 (2007).
[CrossRef] [PubMed]

N. Taguchi, S. Nakagawa, K. Miyasaka, M. Fuse, and T. Aoyagi, “Cardiac output measurement by pulse dye densitometry using three wavelengths,” Pediatr. Crit. Care Med. 5(4), 343–350 (2004).
[CrossRef] [PubMed]

T. Iijima, T. Aoyagi, Y. Iwao, J. Masuda, M. Fuse, N. Kobayashi, and H. Sankawa, “Cardiac output and circulating blood volume analysis by pulse dye-densitometry,” J. Clin. Monit. 13(2), 81–89 (1997).
[CrossRef] [PubMed]

Barker, S. J.

S. J. Barker, J. Curry, D. Redford, and S. Morgan, “Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study,” Anesthesiology 105(5), 892–897 (2006).
[CrossRef] [PubMed]

Bhatia, S. N.

J. H. Park, G. von Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanomaterial system to sensitize, target, and treat tumors,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 981–986 (2010).
[CrossRef] [PubMed]

Buursma, A.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

Chen, D.

H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008).
[CrossRef]

Cheng, J. X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Cheng, Z.

M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008).
[CrossRef] [PubMed]

Cheong, W.

W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Cho, S. H.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
[CrossRef]

Clare, S. E.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

Curry, J.

S. J. Barker, J. Curry, D. Redford, and S. Morgan, “Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study,” Anesthesiology 105(5), 892–897 (2006).
[CrossRef] [PubMed]

Diagaradjane, P.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
[CrossRef]

Drezek, R.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[CrossRef] [PubMed]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Du, G.

H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008).
[CrossRef]

Elliot, A. M.

M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008).
[CrossRef] [PubMed]

El-Sayed, I. H.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef]

El-Sayed, M. A.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef]

Ewald, H.

J. Kraitl, H. Ewald, and H. Gehring, “An optical device to measure blood components by a photoplethysmographic method,” J. Opt. A, Pure Appl. Opt. 7(6), S318–S324 (2005).
[CrossRef]

Faber, D. J.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependant absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 1–4 (2004).
[CrossRef]

Fogal, V.

J. H. Park, G. von Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanomaterial system to sensitize, target, and treat tumors,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 981–986 (2010).
[CrossRef] [PubMed]

Fuse, M.

T. Aoyagi, M. Fuse, N. Kobayashi, K. Machida, and K. Miyasaka, “Multiwavelength pulse oximetry: theory for the future,” Anesth. Analg. 105(6Suppl), S53–S58 (2007).
[CrossRef] [PubMed]

N. Taguchi, S. Nakagawa, K. Miyasaka, M. Fuse, and T. Aoyagi, “Cardiac output measurement by pulse dye densitometry using three wavelengths,” Pediatr. Crit. Care Med. 5(4), 343–350 (2004).
[CrossRef] [PubMed]

T. Iijima, T. Aoyagi, Y. Iwao, J. Masuda, M. Fuse, N. Kobayashi, and H. Sankawa, “Cardiac output and circulating blood volume analysis by pulse dye-densitometry,” J. Clin. Monit. 13(2), 81–89 (1997).
[CrossRef] [PubMed]

Gehring, H.

J. Kraitl, H. Ewald, and H. Gehring, “An optical device to measure blood components by a photoplethysmographic method,” J. Opt. A, Pure Appl. Opt. 7(6), S318–S324 (2005).
[CrossRef]

Gill, K. L.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4(9), 1689–1692 (2004).
[CrossRef]

Gill-Sharp, K. L.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
[CrossRef]

H. Xie, K. L. Gill-Sharp, and D. P. O’Neal, “Quantitative estimation of gold nanoshell concentrations in whole blood using dynamic light scattering,” Nanomedicine 3(1), 89–94 (2007).
[CrossRef] [PubMed]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Goodrich, G. P.

G. J. Michalak, G. P. Goodrich, J. A. Schwartz, W. D. James, and D. P. O’Neal, “Murine photoplethysmography for in vivo estimation of vascular gold nanoshell concentration,” J. Biomed. Opt. 15(4), 047007 (2010).
[CrossRef] [PubMed]

Halas, N.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[CrossRef] [PubMed]

Halas, N. J.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Hirsch, L. R.

W. D. James, L. R. Hirsch, J. L. West, P. D. O’Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radioanal. Nucl. Chem. 271(2), 455–459 (2007).
[CrossRef]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Honda, Y.

J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit. 3(2), 135–138 (1987).
[CrossRef] [PubMed]

Hooper, B. A.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependant absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 1–4 (2004).
[CrossRef]

Huang, X.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Iijima, T.

T. Iijima, T. Aoyagi, Y. Iwao, J. Masuda, M. Fuse, N. Kobayashi, and H. Sankawa, “Cardiac output and circulating blood volume analysis by pulse dye-densitometry,” J. Clin. Monit. 13(2), 81–89 (1997).
[CrossRef] [PubMed]

Imai, T.

T. Imai, C. Mitaka, T. Nosaka, A. Koike, S. Ohki, Y. Isa, and F. Kunimoto, “Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Cr-labeled red blood cells,” Intensive Care Med. 26(9), 1343–1349 (2000).
[CrossRef] [PubMed]

Isa, Y.

T. Imai, C. Mitaka, T. Nosaka, A. Koike, S. Ohki, Y. Isa, and F. Kunimoto, “Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Cr-labeled red blood cells,” Intensive Care Med. 26(9), 1343–1349 (2000).
[CrossRef] [PubMed]

Iwao, Y.

T. Iijima, T. Aoyagi, Y. Iwao, J. Masuda, M. Fuse, N. Kobayashi, and H. Sankawa, “Cardiac output and circulating blood volume analysis by pulse dye-densitometry,” J. Clin. Monit. 13(2), 81–89 (1997).
[CrossRef] [PubMed]

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef]

James, W. D.

G. J. Michalak, G. P. Goodrich, J. A. Schwartz, W. D. James, and D. P. O’Neal, “Murine photoplethysmography for in vivo estimation of vascular gold nanoshell concentration,” J. Biomed. Opt. 15(4), 047007 (2010).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

W. D. James, L. R. Hirsch, J. L. West, P. D. O’Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radioanal. Nucl. Chem. 271(2), 455–459 (2007).
[CrossRef]

Katayama, Y.

Y. Akiyama, T. Mori, Y. Katayama, and T. Niidome, “The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice,” J. Control. Release 139(1), 81–84 (2009).
[CrossRef] [PubMed]

T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, and Y. Niidome, “In vivo monitoring of intravenously injected gold nanorods using near-infrared light,” Small 4(7), 1001–1007 (2008).
[CrossRef] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Kawano, T.

T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, and Y. Niidome, “In vivo monitoring of intravenously injected gold nanorods using near-infrared light,” Small 4(7), 1001–1007 (2008).
[CrossRef] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Kobayashi, N.

T. Aoyagi, M. Fuse, N. Kobayashi, K. Machida, and K. Miyasaka, “Multiwavelength pulse oximetry: theory for the future,” Anesth. Analg. 105(6Suppl), S53–S58 (2007).
[CrossRef] [PubMed]

T. Iijima, T. Aoyagi, Y. Iwao, J. Masuda, M. Fuse, N. Kobayashi, and H. Sankawa, “Cardiac output and circulating blood volume analysis by pulse dye-densitometry,” J. Clin. Monit. 13(2), 81–89 (1997).
[CrossRef] [PubMed]

Koike, A.

T. Imai, C. Mitaka, T. Nosaka, A. Koike, S. Ohki, Y. Isa, and F. Kunimoto, “Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Cr-labeled red blood cells,” Intensive Care Med. 26(9), 1343–1349 (2000).
[CrossRef] [PubMed]

Kotamraju, V. R.

J. H. Park, G. von Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanomaterial system to sensitize, target, and treat tumors,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 981–986 (2010).
[CrossRef] [PubMed]

Kraitl, J.

J. Kraitl, H. Ewald, and H. Gehring, “An optical device to measure blood components by a photoplethysmographic method,” J. Opt. A, Pure Appl. Opt. 7(6), S318–S324 (2005).
[CrossRef]

Krishnan, S.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
[CrossRef]

Ku, G.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4(9), 1689–1692 (2004).
[CrossRef]

Kunimoto, F.

T. Imai, C. Mitaka, T. Nosaka, A. Koike, S. Ohki, Y. Isa, and F. Kunimoto, “Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Cr-labeled red blood cells,” Intensive Care Med. 26(9), 1343–1349 (2000).
[CrossRef] [PubMed]

Lal, S.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Levy, L. B.

D. K. Sardar and L. B. Levy, “Optical properties of whole blood,” Lasers Med. Sci. 13(2), 106–111 (1998).
[CrossRef]

Lewinsky, R. M.

Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. 94(1Suppl), S26–S30 (2002).
[PubMed]

Li, C.

M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008).
[CrossRef] [PubMed]

Li, L.

H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008).
[CrossRef]

Li, Y.

H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008).
[CrossRef]

Liang, W.

H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008).
[CrossRef]

Liu, H.

H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008).
[CrossRef]

Loo, C.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[CrossRef] [PubMed]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Lowery, A.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[CrossRef] [PubMed]

Lu, W.

M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008).
[CrossRef] [PubMed]

Machida, K.

T. Aoyagi, M. Fuse, N. Kobayashi, K. Machida, and K. Miyasaka, “Multiwavelength pulse oximetry: theory for the future,” Anesth. Analg. 105(6Suppl), S53–S58 (2007).
[CrossRef] [PubMed]

Masuda, J.

T. Iijima, T. Aoyagi, Y. Iwao, J. Masuda, M. Fuse, N. Kobayashi, and H. Sankawa, “Cardiac output and circulating blood volume analysis by pulse dye-densitometry,” J. Clin. Monit. 13(2), 81–89 (1997).
[CrossRef] [PubMed]

Meeuwsen-van der Roest, W. P.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

Melancon, M. P.

M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008).
[CrossRef] [PubMed]

Mendelson, Y.

Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. 94(1Suppl), S26–S30 (2002).
[PubMed]

Meng, X.

H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008).
[CrossRef]

Michalak, G. J.

G. J. Michalak, H. A. Anderson, and D. P. O’Neal, “Feasibility of using a two-wavelength photometer to estimate the concentration of circulating near-infrared extinguishing nanoparticles,” J Biomed. Nanotechnol. 6(1), 73–81 (2010).
[CrossRef] [PubMed]

G. J. Michalak, G. P. Goodrich, J. A. Schwartz, W. D. James, and D. P. O’Neal, “Murine photoplethysmography for in vivo estimation of vascular gold nanoshell concentration,” J. Biomed. Opt. 15(4), 047007 (2010).
[CrossRef] [PubMed]

Mik, E. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependant absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 1–4 (2004).
[CrossRef]

Mitaka, C.

T. Imai, C. Mitaka, T. Nosaka, A. Koike, S. Ohki, Y. Isa, and F. Kunimoto, “Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Cr-labeled red blood cells,” Intensive Care Med. 26(9), 1343–1349 (2000).
[CrossRef] [PubMed]

Miyasaka, K.

T. Aoyagi, M. Fuse, N. Kobayashi, K. Machida, and K. Miyasaka, “Multiwavelength pulse oximetry: theory for the future,” Anesth. Analg. 105(6Suppl), S53–S58 (2007).
[CrossRef] [PubMed]

N. Taguchi, S. Nakagawa, K. Miyasaka, M. Fuse, and T. Aoyagi, “Cardiac output measurement by pulse dye densitometry using three wavelengths,” Pediatr. Crit. Care Med. 5(4), 343–350 (2004).
[CrossRef] [PubMed]

Morgan, S.

S. J. Barker, J. Curry, D. Redford, and S. Morgan, “Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study,” Anesthesiology 105(5), 892–897 (2006).
[CrossRef] [PubMed]

Mori, T.

Y. Akiyama, T. Mori, Y. Katayama, and T. Niidome, “The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice,” J. Control. Release 139(1), 81–84 (2009).
[CrossRef] [PubMed]

T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, and Y. Niidome, “In vivo monitoring of intravenously injected gold nanorods using near-infrared light,” Small 4(7), 1001–1007 (2008).
[CrossRef] [PubMed]

Nakagawa, S.

N. Taguchi, S. Nakagawa, K. Miyasaka, M. Fuse, and T. Aoyagi, “Cardiac output measurement by pulse dye densitometry using three wavelengths,” Pediatr. Crit. Care Med. 5(4), 343–350 (2004).
[CrossRef] [PubMed]

Niidome, T.

Y. Akiyama, T. Mori, Y. Katayama, and T. Niidome, “The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice,” J. Control. Release 139(1), 81–84 (2009).
[CrossRef] [PubMed]

T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, and Y. Niidome, “In vivo monitoring of intravenously injected gold nanorods using near-infrared light,” Small 4(7), 1001–1007 (2008).
[CrossRef] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Niidome, Y.

T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, and Y. Niidome, “In vivo monitoring of intravenously injected gold nanorods using near-infrared light,” Small 4(7), 1001–1007 (2008).
[CrossRef] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Nosaka, T.

T. Imai, C. Mitaka, T. Nosaka, A. Koike, S. Ohki, Y. Isa, and F. Kunimoto, “Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Cr-labeled red blood cells,” Intensive Care Med. 26(9), 1343–1349 (2000).
[CrossRef] [PubMed]

O’Neal, D. P.

G. J. Michalak, H. A. Anderson, and D. P. O’Neal, “Feasibility of using a two-wavelength photometer to estimate the concentration of circulating near-infrared extinguishing nanoparticles,” J Biomed. Nanotechnol. 6(1), 73–81 (2010).
[CrossRef] [PubMed]

G. J. Michalak, G. P. Goodrich, J. A. Schwartz, W. D. James, and D. P. O’Neal, “Murine photoplethysmography for in vivo estimation of vascular gold nanoshell concentration,” J. Biomed. Opt. 15(4), 047007 (2010).
[CrossRef] [PubMed]

H. Xie, K. L. Gill-Sharp, and D. P. O’Neal, “Quantitative estimation of gold nanoshell concentrations in whole blood using dynamic light scattering,” Nanomedicine 3(1), 89–94 (2007).
[CrossRef] [PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4(9), 1689–1692 (2004).
[CrossRef]

O’Neal, P. D.

W. D. James, L. R. Hirsch, J. L. West, P. D. O’Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radioanal. Nucl. Chem. 271(2), 455–459 (2007).
[CrossRef]

Ohki, S.

T. Imai, C. Mitaka, T. Nosaka, A. Koike, S. Ohki, Y. Isa, and F. Kunimoto, “Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Cr-labeled red blood cells,” Intensive Care Med. 26(9), 1343–1349 (2000).
[CrossRef] [PubMed]

Okamoto, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Olsen, T.

M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008).
[CrossRef] [PubMed]

Park, J. H.

J. H. Park, G. von Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanomaterial system to sensitize, target, and treat tumors,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 981–986 (2010).
[CrossRef] [PubMed]

Payne, J. D.

W. D. James, L. R. Hirsch, J. L. West, P. D. O’Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radioanal. Nucl. Chem. 271(2), 455–459 (2007).
[CrossRef]

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
[CrossRef]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Prahl, S. A.

W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Rajaram, N.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
[CrossRef]

Redford, D.

S. J. Barker, J. Curry, D. Redford, and S. Morgan, “Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study,” Anesthesiology 105(5), 892–897 (2006).
[CrossRef] [PubMed]

Ruoslahti, E.

J. H. Park, G. von Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanomaterial system to sensitize, target, and treat tumors,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 981–986 (2010).
[CrossRef] [PubMed]

Rylander, H. G.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
[CrossRef]

Sailor, M. J.

J. H. Park, G. von Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanomaterial system to sensitize, target, and treat tumors,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 981–986 (2010).
[CrossRef] [PubMed]

Sankawa, H.

T. Iijima, T. Aoyagi, Y. Iwao, J. Masuda, M. Fuse, N. Kobayashi, and H. Sankawa, “Cardiac output and circulating blood volume analysis by pulse dye-densitometry,” J. Clin. Monit. 13(2), 81–89 (1997).
[CrossRef] [PubMed]

Sardar, D. K.

D. K. Sardar and L. B. Levy, “Optical properties of whole blood,” Lasers Med. Sci. 13(2), 106–111 (1998).
[CrossRef]

Schwartz, J.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
[CrossRef]

Schwartz, J. A.

G. J. Michalak, G. P. Goodrich, J. A. Schwartz, W. D. James, and D. P. O’Neal, “Murine photoplethysmography for in vivo estimation of vascular gold nanoshell concentration,” J. Biomed. Opt. 15(4), 047007 (2010).
[CrossRef] [PubMed]

Severinghaus, J. W.

J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit. 3(2), 135–138 (1987).
[CrossRef] [PubMed]

Shimoda, K.

T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, and Y. Niidome, “In vivo monitoring of intravenously injected gold nanorods using near-infrared light,” Small 4(7), 1001–1007 (2008).
[CrossRef] [PubMed]

Stafford, J.

M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008).
[CrossRef] [PubMed]

Stoica, G.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4(9), 1689–1692 (2004).
[CrossRef]

Taguchi, N.

N. Taguchi, S. Nakagawa, K. Miyasaka, M. Fuse, and T. Aoyagi, “Cardiac output measurement by pulse dye densitometry using three wavelengths,” Pediatr. Crit. Care Med. 5(4), 343–350 (2004).
[CrossRef] [PubMed]

Takahashi, H.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Tang, F.

H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008).
[CrossRef]

Teng, X.

H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008).
[CrossRef]

Tunnell, J. W.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
[CrossRef]

van Gemert, M. J. C.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependant absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 1–4 (2004).
[CrossRef]

van Leeuwen, T. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependant absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 1–4 (2004).
[CrossRef]

von Maltzahn, G.

J. H. Park, G. von Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanomaterial system to sensitize, target, and treat tumors,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 981–986 (2010).
[CrossRef] [PubMed]

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Wang, J. C.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
[CrossRef]

Wang, L. V.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4(9), 1689–1692 (2004).
[CrossRef]

Wang, X.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4(9), 1689–1692 (2004).
[CrossRef]

Wang, Y.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4(9), 1689–1692 (2004).
[CrossRef]

Wasserman, Y.

Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. 94(1Suppl), S26–S30 (2002).
[PubMed]

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Welch, A. J.

W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

West, J.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[CrossRef] [PubMed]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

W. D. James, L. R. Hirsch, J. L. West, P. D. O’Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radioanal. Nucl. Chem. 271(2), 455–459 (2007).
[CrossRef]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Xie, H.

H. Xie, K. L. Gill-Sharp, and D. P. O’Neal, “Quantitative estimation of gold nanoshell concentrations in whole blood using dynamic light scattering,” Nanomedicine 3(1), 89–94 (2007).
[CrossRef] [PubMed]

Xie, X.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4(9), 1689–1692 (2004).
[CrossRef]

Xu, M. J.

J. H. Park, G. von Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanomaterial system to sensitize, target, and treat tumors,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 981–986 (2010).
[CrossRef] [PubMed]

Yamagata, M.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Yamakoshi, K.

K. Yamakoshi and Y. Yamakoshi, “Pulse glucosimetry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt. 11(5), 1–9 (2006).
[CrossRef]

Yamakoshi, Y.

K. Yamakoshi and Y. Yamakoshi, “Pulse glucosimetry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt. 11(5), 1–9 (2006).
[CrossRef]

Yang, Z.

M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008).
[CrossRef] [PubMed]

Zaman, R. T.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
[CrossRef]

Zhang, J. Z.

M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008).
[CrossRef] [PubMed]

Zhang, R.

M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008).
[CrossRef] [PubMed]

Zhang, Y.

H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008).
[CrossRef]

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

Anesth. Analg. (2)

Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. 94(1Suppl), S26–S30 (2002).
[PubMed]

T. Aoyagi, M. Fuse, N. Kobayashi, K. Machida, and K. Miyasaka, “Multiwavelength pulse oximetry: theory for the future,” Anesth. Analg. 105(6Suppl), S53–S58 (2007).
[CrossRef] [PubMed]

Anesthesiology (1)

S. J. Barker, J. Curry, D. Redford, and S. Morgan, “Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study,” Anesthesiology 105(5), 892–897 (2006).
[CrossRef] [PubMed]

Cancer Lett. (1)

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004).
[CrossRef] [PubMed]

Clin. Chem. (1)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

IEEE J. Quantum Electron. (1)

W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

IEEE. J. Sel. Top. Quant. Electron. (1)

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007).
[CrossRef]

Intensive Care Med. (1)

T. Imai, C. Mitaka, T. Nosaka, A. Koike, S. Ohki, Y. Isa, and F. Kunimoto, “Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Cr-labeled red blood cells,” Intensive Care Med. 26(9), 1343–1349 (2000).
[CrossRef] [PubMed]

J Biomed. Nanotechnol. (1)

G. J. Michalak, H. A. Anderson, and D. P. O’Neal, “Feasibility of using a two-wavelength photometer to estimate the concentration of circulating near-infrared extinguishing nanoparticles,” J Biomed. Nanotechnol. 6(1), 73–81 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

K. Yamakoshi and Y. Yamakoshi, “Pulse glucosimetry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt. 11(5), 1–9 (2006).
[CrossRef]

G. J. Michalak, G. P. Goodrich, J. A. Schwartz, W. D. James, and D. P. O’Neal, “Murine photoplethysmography for in vivo estimation of vascular gold nanoshell concentration,” J. Biomed. Opt. 15(4), 047007 (2010).
[CrossRef] [PubMed]

J. Clin. Monit. (2)

T. Iijima, T. Aoyagi, Y. Iwao, J. Masuda, M. Fuse, N. Kobayashi, and H. Sankawa, “Cardiac output and circulating blood volume analysis by pulse dye-densitometry,” J. Clin. Monit. 13(2), 81–89 (1997).
[CrossRef] [PubMed]

J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit. 3(2), 135–138 (1987).
[CrossRef] [PubMed]

J. Control. Release (2)

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[CrossRef] [PubMed]

Y. Akiyama, T. Mori, Y. Katayama, and T. Niidome, “The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice,” J. Control. Release 139(1), 81–84 (2009).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

J. Kraitl, H. Ewald, and H. Gehring, “An optical device to measure blood components by a photoplethysmographic method,” J. Opt. A, Pure Appl. Opt. 7(6), S318–S324 (2005).
[CrossRef]

J. Radioanal. Nucl. Chem. (1)

W. D. James, L. R. Hirsch, J. L. West, P. D. O’Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radioanal. Nucl. Chem. 271(2), 455–459 (2007).
[CrossRef]

Lasers Med. Sci. (2)

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef]

D. K. Sardar and L. B. Levy, “Optical properties of whole blood,” Lasers Med. Sci. 13(2), 106–111 (1998).
[CrossRef]

Mol. Cancer Ther. (1)

M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008).
[CrossRef] [PubMed]

Nano Lett. (3)

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4(9), 1689–1692 (2004).
[CrossRef]

Nanomedicine (1)

H. Xie, K. L. Gill-Sharp, and D. P. O’Neal, “Quantitative estimation of gold nanoshell concentrations in whole blood using dynamic light scattering,” Nanomedicine 3(1), 89–94 (2007).
[CrossRef] [PubMed]

Nanotechnology (1)

H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008).
[CrossRef]

Pediatr. Crit. Care Med. (1)

N. Taguchi, S. Nakagawa, K. Miyasaka, M. Fuse, and T. Aoyagi, “Cardiac output measurement by pulse dye densitometry using three wavelengths,” Pediatr. Crit. Care Med. 5(4), 343–350 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependant absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 1–4 (2004).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

J. H. Park, G. von Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanomaterial system to sensitize, target, and treat tumors,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 981–986 (2010).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Small (1)

T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, and Y. Niidome, “In vivo monitoring of intravenously injected gold nanorods using near-infrared light,” Small 4(7), 1001–1007 (2008).
[CrossRef] [PubMed]

Other (5)

A. C. Guyton, and J. E. Hall, Textbook of Medical Physiology, Chapters 39–40, pp. 491–513, (Philadelphia, PA, Elsevier Saunders, 2006).

S. A. Prahl, “Tabulated Molar Extinction Coefficients of Reduced and Oxygenated Hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html (1998)

A. J. Welch, and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, New York, NY, Plenum Press, 1995.

G. J. Michalak, “In vivo non-invasive monitoring of optically resonant metal nanoparticles using multi-wavelength photoplethysmography,” Dissertation published August 2010.

J. G. Webster, Design of Pulse Oximeters, Chapter 4, pp. 40–55, New York, NY, Taylor and Francis Group, 1997.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

– Schematic of the optical pulse photometer coupled to an animal and diagram of the examined pulsatile arterial blood.

Fig. 2
Fig. 2

- Normalized extinction spectrum of the gold nanorods (grey line) with overlaid spectra from the LED’s showing the preferential attenuation at 805 nm compared to 660 and 940 nm.

Fig. 3
Fig. 3

- Calibration curve showing the linear correlation between R 660/940 and SpO2 (SpO2 = −36.589R 660/940 + 117.15, R2 = 0.9931).

Fig. 4
Fig. 4

- Linear model showing agreement between nanorod optical density measured with pulse photometry and spectrophotometry (y = 1.1566x – 0.0497, p = 6.45 x 10−16, R2 = 0.903, n = 30). The 95% confidence (large dashes) and prediction (small dashes) intervals are shown for the entire range of measured optical densities using the pulse photometer.

Fig. 5
Fig. 5

- Differences between the measurements made with the pulse photometer (PP) and spectrophotometry (UV/Vis) plotted with respect to the average of the two measurements with the bias (solid line) and precision (dashed lines) shown.

Tables (3)

Tables Icon

Table 1 - Calculated effective attenuation coefficients of oxygenated whole blood from the five mice.

Tables Icon

Table 2 - Optical properties of reduced whole blood obtained from the literature [32,34].

Tables Icon

Table 3 – Calculated effective attenuation coefficients of reduced whole blood.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R = Δ A λ 1 Δ A λ 2 = log ( D C D C A C ) λ 1 log ( D C D C A C ) λ 2 ~ ( A C D C ) λ 1 ( A C D C ) λ 2 .
R 805 / 940 = 0.8 μ H b O 2 940 + μ N R 805 μ H b O 2 940 + 0.2018 μ N R 805 ,
μ H b O 2 805 = 0.8 μ H b O 2 940 ,
μ H b O 2 660 = 0.5 μ H b O 2 940 ,
μ N R 940 = 0.2018 μ N R 805 .
μ e f f λ = 3 ( μ a H b r λ ) ( μ a H b r λ + ( 1 g ) μ s H b r λ ) .
R 660 / 940 = S ( μ H b O 2 660 ) + ( 1 S ) ( μ H b r 660 ) S ( μ H b O 2 940 ) + ( 1 S ) ( 0.2404 μ H b r 660 ) ,
μ H b r 940 = 0.2404 μ H b r 660 ,
μ H b r 805 = 0.2540 μ H b r 660 .
R 805 / 940 = S ( μ H b O 2 805 ) + ( 1 S ) ( μ H b r 805 ) + μ N R S ( μ H b O 2 940 ) + ( 1 S ) ( μ H b r 940 ) + 0.2018 μ N R ,
R 660 / 940 = S ( μ H b O 2 660 ) + ( 1 S ) ( μ H b r 660 ) + 0.3523 μ N R S ( μ H b O 2 940 ) + ( 1 S ) ( μ H b r 940 ) + 0.2018 μ N R .

Metrics