Abstract

We demonstrate a distortion free tunable optical delay as long as 135 ps with a 10 GHz bandwidth using thermally tuned silicon microring resonators in the novel balanced configuration. The device is simple, easy to control and compact measuring only 30 µm wide by 250 µm long.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
    [Crossref]
  2. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
    [Crossref]
  3. A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
    [Crossref]
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref] [PubMed]
  5. D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
    [Crossref]
  6. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  7. C. Yu, T. Luo, L. Zhang, and A. E. Willner, “Data pulse distortion induced by a slow-light tunable delay line in optical fiber,” Opt. Lett. 32(1), 20–22 (2007).
    [Crossref]
  8. Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79(1), 013805 (2009).
    [Crossref]
  9. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
    [Crossref] [PubMed]
  10. Y. Okawachi, M. A. Foster, J. E. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14(6), 2317–2322 (2006).
    [Crossref] [PubMed]
  11. M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
    [Crossref]
  12. C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” Proc. IEEE/LEOS Benelux Chapter, 2005.
  13. Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006).
    [Crossref] [PubMed]
  14. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007).
    [Crossref] [PubMed]
  15. F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16(12), 8395–8405 (2008).
    [Crossref] [PubMed]
  16. J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008).
    [Crossref]
  17. N. K. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously Tunable Optical Buffering at 40 Gb/s for Optical Packet Switching Networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
    [Crossref]
  18. Z. Hu, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. B 91(3-4), 421–424 (2008).
    [Crossref]
  19. Y. Okawachi, M. A. Foster, X. Chen, A. C. Turner-Foster, R. Salem, M. Lipson, C. Xu, and A. L. Gaeta, “Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides,” Opt. Express 16(14), 10349–10357 (2008).
    [Crossref] [PubMed]
  20. Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 micros tunable delay using parametric mixing and optical phase conjugation in Si waveguides,” Opt. Express 17(9), 7004–7010 (2009).
    [Crossref] [PubMed]
  21. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [Crossref]
  22. J. B. Khurgin, “Optical buffers based on slow light in EIT media and coupled resonator structures – comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062–1074 (2005).
    [Crossref]
  23. J. B. Khurgin, “Dispersion and loss limitations on the performance of optical delay lines based on coupled resonant structures,” Opt. Lett. 32(2), 133–135 (2007).
    [Crossref]
  24. C. K. Madsen, “Subband all-pass filter architectures with application to dispersion and dispersion-slope compensation and continuously variable delay lines,” J. Lightwave Technol. 21(10), 2412–2420 (2003).
    [Crossref]
  25. L. Zhang, T. Luo, C. Yu, W. Zhang, and A. E. Willner, “Pattern dependence of data distortion in slow-light elements,” J. Lightwave Technol. 25(7), 1754–1760 (2007).
    [Crossref]
  26. A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
    [Crossref]
  27. J. B. Khurgin and P. A. Morton, “Tunable wideband optical delay line based on balanced coupled resonator structures,” Opt. Lett. 34(17), 2655–2657 (2009).
    [Crossref] [PubMed]
  28. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [Crossref] [PubMed]
  29. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]

2009 (3)

2008 (9)

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16(12), 8395–8405 (2008).
[Crossref] [PubMed]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

N. K. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously Tunable Optical Buffering at 40 Gb/s for Optical Packet Switching Networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
[Crossref]

Z. Hu, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. B 91(3-4), 421–424 (2008).
[Crossref]

Y. Okawachi, M. A. Foster, X. Chen, A. C. Turner-Foster, R. Salem, M. Lipson, C. Xu, and A. L. Gaeta, “Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides,” Opt. Express 16(14), 10349–10357 (2008).
[Crossref] [PubMed]

2007 (6)

2006 (3)

2005 (4)

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[Crossref] [PubMed]

J. B. Khurgin, “Optical buffers based on slow light in EIT media and coupled resonator structures – comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062–1074 (2005).
[Crossref]

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

2003 (1)

1997 (1)

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Ben Yoo, S. J.

Bergman, K.

Biberman, A.

Boyd, R. W.

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79(1), 013805 (2009).
[Crossref]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[Crossref]

Breda, A.

Canciamilla, A.

Cappuzzo, M. A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

Chen, E.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

Chen, L.

Chen, W.

N. K. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously Tunable Optical Buffering at 40 Gb/s for Optical Packet Switching Networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
[Crossref]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Chen, X.

Chu, S.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

N. K. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously Tunable Optical Buffering at 40 Gb/s for Optical Packet Switching Networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
[Crossref]

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

Dai, Y.

Djordjevic, S. S.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Fazal, I.

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

Ferrari, C.

Fontaine, N. K.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

N. K. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously Tunable Optical Buffering at 40 Gb/s for Optical Packet Switching Networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
[Crossref]

Foster, M. A.

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

Gaeta, A.

Gaeta, A. L.

Gasparyan, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[Crossref]

Gomez, L. T.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

Gomez-Iglesias, A.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[Crossref]

Griffin, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Hu, Z.

Z. Hu, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. B 91(3-4), 421–424 (2008).
[Crossref]

Karalar, A. O.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Kasper, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

Khurgin, J. B.

Krauss, T. F.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[Crossref]

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

Laskowski, E. J.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

Le Grange, J.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

Lee, B. G.

Lipson, M.

Little, B. E.

N. K. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously Tunable Optical Buffering at 40 Gb/s for Optical Packet Switching Networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
[Crossref]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Liu, L.

Z. Hu, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. B 91(3-4), 421–424 (2008).
[Crossref]

Luo, T.

Madsen, C. K.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

C. K. Madsen, “Subband all-pass filter architectures with application to dispersion and dispersion-slope compensation and continuously variable delay lines,” J. Lightwave Technol. 21(10), 2412–2420 (2003).
[Crossref]

Marti, J.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

Martinelli, M.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Melloni, A.

Michaeli, A.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[Crossref]

Morichetti, F.

Morton, P. A.

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

O’Brien, D.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[Crossref]

Okawachi, Y.

Pan, Z.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

N. K. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously Tunable Optical Buffering at 40 Gb/s for Optical Packet Switching Networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Patel, S. S.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

Rasras, M. S.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

Salem, R.

Salib, M.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[Crossref]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Settle, M. D.

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[Crossref]

Shakya, J.

Sharping, J. E.

Sherwood-Droz, N.

Shi, Z.

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79(1), 013805 (2009).
[Crossref]

Sun, J.

Z. Hu, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. B 91(3-4), 421–424 (2008).
[Crossref]

Turner-Foster, A. C.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Wang, H.

Wang, J.

Z. Hu, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. B 91(3-4), 421–424 (2008).
[Crossref]

Willner, A. E.

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

C. Yu, T. Luo, L. Zhang, and A. E. Willner, “Data pulse distortion induced by a slow-light tunable delay line in optical fiber,” Opt. Lett. 32(1), 20–22 (2007).
[Crossref]

L. Zhang, T. Luo, C. Yu, W. Zhang, and A. E. Willner, “Pattern dependence of data distortion in slow-light elements,” J. Lightwave Technol. 25(7), 1754–1760 (2007).
[Crossref]

Wong-Foy, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Xu, C.

Xu, Q.

Yan, L.

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

Yang, C.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Yang, J.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

N. K. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously Tunable Optical Buffering at 40 Gb/s for Optical Packet Switching Networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008).
[Crossref]

Yoo, S. J. B.

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

Yu, C.

Zhang, B.

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

Zhang, L.

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

C. Yu, T. Luo, L. Zhang, and A. E. Willner, “Data pulse distortion induced by a slow-light tunable delay line in optical fiber,” Opt. Lett. 32(1), 20–22 (2007).
[Crossref]

L. Zhang, T. Luo, C. Yu, W. Zhang, and A. E. Willner, “Pattern dependence of data distortion in slow-light elements,” J. Lightwave Technol. 25(7), 1754–1760 (2007).
[Crossref]

Zhang, W.

Appl. Phys. B (1)

Z. Hu, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. B 91(3-4), 421–424 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008).
[Crossref]

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Nature (2)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (8)

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[Crossref] [PubMed]

Y. Okawachi, M. A. Foster, J. E. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14(6), 2317–2322 (2006).
[Crossref] [PubMed]

Y. Okawachi, M. A. Foster, X. Chen, A. C. Turner-Foster, R. Salem, M. Lipson, C. Xu, and A. L. Gaeta, “Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides,” Opt. Express 16(14), 10349–10357 (2008).
[Crossref] [PubMed]

Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 micros tunable delay using parametric mixing and optical phase conjugation in Si waveguides,” Opt. Express 17(9), 7004–7010 (2009).
[Crossref] [PubMed]

Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006).
[Crossref] [PubMed]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007).
[Crossref] [PubMed]

F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16(12), 8395–8405 (2008).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Photon. News (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[Crossref]

Photon. Technol. Lett. (1)

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

Phys. Rev. A (1)

Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79(1), 013805 (2009).
[Crossref]

Phys. Rev. B (1)

D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007).
[Crossref]

Other (1)

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” Proc. IEEE/LEOS Benelux Chapter, 2005.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Tunable delay line structure with overall central frequency ωr. In order to tune the delay, the resonances of the red (upper) rings are red shifted by increasing the refractive index of the ring, while the resonances of the blue (lower) rings are blue shifted by decreasing the refractive index of the rings. (b) Simulated delay spectra of balanced SCISSOR structure from (a): (I) delay spectra with all rings aligned to ωr; (II) delay spectra of red and blue shifted rings; (III) delay spectra for complete device.

Fig. 2
Fig. 2

Balanced SCISSOR simulations calculated using the equations derived in Ref. 27. (a) Delay spectrum as a function of frequency relative to the device’s operating frequency. No ripple is observed in the spectrum. (b) Third order delay dispersion as a function of resonance detuning. The simulations show that third order delay dispersion can be cancelled using the Balanced SCISSOR. For larger resonance detuning, the third order delay dispersion remains low.

Fig. 3
Fig. 3

Microscope image showing the fabricated structure. The heaters are located directly above the rings.

Fig. 4
Fig. 4

Test setup schematic. AM: Amplitude modulator; VOA: Variable Optical Attenuator.

Fig. 5
Fig. 5

Resonance wavelength vs applied voltage to the ring heaters. The resonance wavelengths are spread out more at low voltages than at higher ones. This happens because the ring resonances are separated by a fixed amount in wavelength from fabrication. Since the temperature of the rings depends on the power dissipated by the heaters, the shift in resonance wavelength goes as the square of the voltage. A small difference in resonant wavelength represents a larger difference in voltage at lower voltages than at higher ones.

Fig. 6
Fig. 6

Delay results of the 8 ring balanced SCISSOR. (a) Oscilloscope traces showing the signal output for the different resonant frequency detuning. (b) Delay as a function of resonant frequency detuning (measured delay noted in parenthesis). The solid line is the simulated delay.

Fig. 7
Fig. 7

Bit error rate measurements for different resonance detuning. For a detuning of 10 GHz or greater, the power penalty for the delay becomes very small.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ T ( ω ) = n = 1 N k 2 τ 1 + ρ 2 2 cos ( ω ω n )

Metrics