Abstract

In this report, we propose a square lattice photonic crystal hetero-slab-edge microcavity design. In numerical simulations, three surface modes in this microcavity are investigated and optimized by tuning the slab-edge termination τ and gradual mirror layer. High simulated quality (Q) factor of 2.3 × 105 and small mode volume of 0.105 μm3 are obtained from microcavity with τ = 0.80. In experiments, we obtain and identify different surface modes lasing. The surface mode in the second photonic band gap shows a very-low threshold of 140 μW and high Q factor of 5,500, which could be an avenue to low-threshold optical lasers and highly sensitive sensor applications with efficient light-matter interactions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, Optical Waves in Layered Media, (Wiley, New York, 2005).
  2. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
    [CrossRef] [PubMed]
  3. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
    [CrossRef] [PubMed]
  4. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460(7253), 367–370 (2009).
    [CrossRef] [PubMed]
  5. W. Ṡmigaj, “Model of light collimation by photonic crystal surface modes,” Phys. Rev. B 75(20), 205430 (2007).
    [CrossRef]
  6. H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92(9), 092114 (2008).
    [CrossRef]
  7. H. C. Chen, K. K. Tsia, and A. W. Poon, “Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin,” Opt. Express 14(16), 7368–7377 (2006).
    [CrossRef] [PubMed]
  8. Yu. A. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
    [CrossRef]
  9. V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
    [CrossRef] [PubMed]
  10. S. Xiao and M. Qiu, “Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals,” J. Opt. Soc. Am. B 24(5), 1225–1229 (2007).
    [CrossRef]
  11. Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90(4), 041108 (2007).
    [CrossRef]
  12. J. Wang, Y. Song, W. Yan, and M. Qiu, “High-Q photonic crystal surface-mode cavities on crystalline SOI structures,” Opt. Commun. 283(11), 2461–2464 (2010).
    [CrossRef]
  13. J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84(16), 3016–3018 (2004).
    [CrossRef]
  14. T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal hetero-slab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
    [CrossRef]
  15. V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron. 25(5), 1212–1216 (2010).
    [CrossRef]
  16. T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “High-index sensitivity of surface mode in photonic crystal hetero-slab-edge microcavity,” Opt. Lett. 35(9), 1452–1454 (2010).
    [CrossRef] [PubMed]
  17. Y. Tanaka, T. Asano, and S. Noda, “Design of Photonic Crystal Nanocavity with Q-factor of ~109,” J. Lightwave Technol. 26(11), 1532–1539 (2008).
    [CrossRef]
  18. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, 2008).
  19. S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73(23), 235117 (2006).
    [CrossRef]

2010

V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron. 25(5), 1212–1216 (2010).
[CrossRef]

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “High-index sensitivity of surface mode in photonic crystal hetero-slab-edge microcavity,” Opt. Lett. 35(9), 1452–1454 (2010).
[CrossRef] [PubMed]

J. Wang, Y. Song, W. Yan, and M. Qiu, “High-Q photonic crystal surface-mode cavities on crystalline SOI structures,” Opt. Commun. 283(11), 2461–2464 (2010).
[CrossRef]

2009

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal hetero-slab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
[CrossRef]

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460(7253), 367–370 (2009).
[CrossRef] [PubMed]

2008

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92(9), 092114 (2008).
[CrossRef]

Y. Tanaka, T. Asano, and S. Noda, “Design of Photonic Crystal Nanocavity with Q-factor of ~109,” J. Lightwave Technol. 26(11), 1532–1539 (2008).
[CrossRef]

2007

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
[CrossRef] [PubMed]

S. Xiao and M. Qiu, “Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals,” J. Opt. Soc. Am. B 24(5), 1225–1229 (2007).
[CrossRef]

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90(4), 041108 (2007).
[CrossRef]

W. Ṡmigaj, “Model of light collimation by photonic crystal surface modes,” Phys. Rev. B 75(20), 205430 (2007).
[CrossRef]

2006

H. C. Chen, K. K. Tsia, and A. W. Poon, “Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin,” Opt. Express 14(16), 7368–7377 (2006).
[CrossRef] [PubMed]

S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73(23), 235117 (2006).
[CrossRef]

2004

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84(16), 3016–3018 (2004).
[CrossRef]

Yu. A. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

1993

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
[CrossRef] [PubMed]

1991

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[CrossRef] [PubMed]

?migaj, W.

W. Ṡmigaj, “Model of light collimation by photonic crystal surface modes,” Phys. Rev. B 75(20), 205430 (2007).
[CrossRef]

Alieva, E. V.

V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron. 25(5), 1212–1216 (2010).
[CrossRef]

Andersson, U.

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90(4), 041108 (2007).
[CrossRef]

Arjavalingam, G.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
[CrossRef] [PubMed]

Asano, T.

Y. Tanaka, T. Asano, and S. Noda, “Design of Photonic Crystal Nanocavity with Q-factor of ~109,” J. Lightwave Technol. 26(11), 1532–1539 (2008).
[CrossRef]

Bozhevolnyi, S. I.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
[CrossRef] [PubMed]

Brommer, K. D.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
[CrossRef] [PubMed]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[CrossRef] [PubMed]

Bulu, I.

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92(9), 092114 (2008).
[CrossRef]

Caglayan, H.

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92(9), 092114 (2008).
[CrossRef]

Chen, H. C.

H. C. Chen, K. K. Tsia, and A. W. Poon, “Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin,” Opt. Express 14(16), 7368–7377 (2006).
[CrossRef] [PubMed]

Dainese, M.

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90(4), 041108 (2007).
[CrossRef]

Frandsen, L. H.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
[CrossRef] [PubMed]

Ho, W. D.

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “High-index sensitivity of surface mode in photonic crystal hetero-slab-edge microcavity,” Opt. Lett. 35(9), 1452–1454 (2010).
[CrossRef] [PubMed]

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal hetero-slab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
[CrossRef]

Hsiao, Y. H.

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “High-index sensitivity of surface mode in photonic crystal hetero-slab-edge microcavity,” Opt. Lett. 35(9), 1452–1454 (2010).
[CrossRef] [PubMed]

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal hetero-slab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
[CrossRef]

Ishizaki, K.

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460(7253), 367–370 (2009).
[CrossRef] [PubMed]

Joannopoulos, J. D.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
[CrossRef] [PubMed]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[CrossRef] [PubMed]

Kim, G. H.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84(16), 3016–3018 (2004).
[CrossRef]

Kim, S. B.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84(16), 3016–3018 (2004).
[CrossRef]

Kim, S. H.

S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73(23), 235117 (2006).
[CrossRef]

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84(16), 3016–3018 (2004).
[CrossRef]

Kim, S. K.

S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73(23), 235117 (2006).
[CrossRef]

Konopsky, V. N.

V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron. 25(5), 1212–1216 (2010).
[CrossRef]

Kristensen, M.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
[CrossRef] [PubMed]

Lee, P. T.

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “High-index sensitivity of surface mode in photonic crystal hetero-slab-edge microcavity,” Opt. Lett. 35(9), 1452–1454 (2010).
[CrossRef] [PubMed]

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal hetero-slab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
[CrossRef]

Lee, Y. H.

S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73(23), 235117 (2006).
[CrossRef]

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84(16), 3016–3018 (2004).
[CrossRef]

Lu, T. W.

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “High-index sensitivity of surface mode in photonic crystal hetero-slab-edge microcavity,” Opt. Lett. 35(9), 1452–1454 (2010).
[CrossRef] [PubMed]

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal hetero-slab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
[CrossRef]

McNab, S. J.

Yu. A. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

Meade, R. D.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
[CrossRef] [PubMed]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[CrossRef] [PubMed]

Moll, N.

Yu. A. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

Noda, S.

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460(7253), 367–370 (2009).
[CrossRef] [PubMed]

Y. Tanaka, T. Asano, and S. Noda, “Design of Photonic Crystal Nanocavity with Q-factor of ~109,” J. Lightwave Technol. 26(11), 1532–1539 (2008).
[CrossRef]

Ozbay, E.

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92(9), 092114 (2008).
[CrossRef]

Park, H. G.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84(16), 3016–3018 (2004).
[CrossRef]

Poon, A. W.

H. C. Chen, K. K. Tsia, and A. W. Poon, “Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin,” Opt. Express 14(16), 7368–7377 (2006).
[CrossRef] [PubMed]

Qiu, M.

J. Wang, Y. Song, W. Yan, and M. Qiu, “High-Q photonic crystal surface-mode cavities on crystalline SOI structures,” Opt. Commun. 283(11), 2461–2464 (2010).
[CrossRef]

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90(4), 041108 (2007).
[CrossRef]

S. Xiao and M. Qiu, “Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals,” J. Opt. Soc. Am. B 24(5), 1225–1229 (2007).
[CrossRef]

Rappe, A. M.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
[CrossRef] [PubMed]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[CrossRef] [PubMed]

Robertson, W. M.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
[CrossRef] [PubMed]

Song, Y.

J. Wang, Y. Song, W. Yan, and M. Qiu, “High-Q photonic crystal surface-mode cavities on crystalline SOI structures,” Opt. Commun. 283(11), 2461–2464 (2010).
[CrossRef]

Swillo, M.

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90(4), 041108 (2007).
[CrossRef]

Tanaka, Y.

Y. Tanaka, T. Asano, and S. Noda, “Design of Photonic Crystal Nanocavity with Q-factor of ~109,” J. Lightwave Technol. 26(11), 1532–1539 (2008).
[CrossRef]

Tsia, K. K.

H. C. Chen, K. K. Tsia, and A. W. Poon, “Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin,” Opt. Express 14(16), 7368–7377 (2006).
[CrossRef] [PubMed]

Vlasov, Yu. A.

Yu. A. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
[CrossRef] [PubMed]

Wang, J.

J. Wang, Y. Song, W. Yan, and M. Qiu, “High-Q photonic crystal surface-mode cavities on crystalline SOI structures,” Opt. Commun. 283(11), 2461–2464 (2010).
[CrossRef]

Wosinski, L.

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90(4), 041108 (2007).
[CrossRef]

Xiao, S.

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90(4), 041108 (2007).
[CrossRef]

S. Xiao and M. Qiu, “Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals,” J. Opt. Soc. Am. B 24(5), 1225–1229 (2007).
[CrossRef]

Yan, W.

J. Wang, Y. Song, W. Yan, and M. Qiu, “High-Q photonic crystal surface-mode cavities on crystalline SOI structures,” Opt. Commun. 283(11), 2461–2464 (2010).
[CrossRef]

Yang, J. K.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84(16), 3016–3018 (2004).
[CrossRef]

Zhang, Z.

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90(4), 041108 (2007).
[CrossRef]

Appl. Phys. Lett.

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92(9), 092114 (2008).
[CrossRef]

Z. Zhang, M. Dainese, L. Wosinski, S. Xiao, M. Qiu, M. Swillo, and U. Andersson, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90(4), 041108 (2007).
[CrossRef]

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84(16), 3016–3018 (2004).
[CrossRef]

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal hetero-slab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
[CrossRef]

Biosens. Bioelectron.

V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron. 25(5), 1212–1216 (2010).
[CrossRef]

J. Appl. Phys.

Yu. A. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

J. Lightwave Technol.

Y. Tanaka, T. Asano, and S. Noda, “Design of Photonic Crystal Nanocavity with Q-factor of ~109,” J. Lightwave Technol. 26(11), 1532–1539 (2008).
[CrossRef]

J. Opt. Soc. Am. B

S. Xiao and M. Qiu, “Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals,” J. Opt. Soc. Am. B 24(5), 1225–1229 (2007).
[CrossRef]

Nano Lett.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
[CrossRef] [PubMed]

Nature

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460(7253), 367–370 (2009).
[CrossRef] [PubMed]

Opt. Commun.

J. Wang, Y. Song, W. Yan, and M. Qiu, “High-Q photonic crystal surface-mode cavities on crystalline SOI structures,” Opt. Commun. 283(11), 2461–2464 (2010).
[CrossRef]

Opt. Express

H. C. Chen, K. K. Tsia, and A. W. Poon, “Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin,” Opt. Express 14(16), 7368–7377 (2006).
[CrossRef] [PubMed]

Opt. Lett.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18(7), 528–530 (1993).
[CrossRef] [PubMed]

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “High-index sensitivity of surface mode in photonic crystal hetero-slab-edge microcavity,” Opt. Lett. 35(9), 1452–1454 (2010).
[CrossRef] [PubMed]

Phys. Rev. B

W. Ṡmigaj, “Model of light collimation by photonic crystal surface modes,” Phys. Rev. B 75(20), 205430 (2007).
[CrossRef]

S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73(23), 235117 (2006).
[CrossRef]

Phys. Rev. B Condens. Matter

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991).
[CrossRef] [PubMed]

Other

P. Yeh, Optical Waves in Layered Media, (Wiley, New York, 2005).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) (top) Scheme of 2D truncated square-PhC slab and (bottom) the definition of slab-edge termination parameter τ. (b) The simulated TE-like band diagram (right) and transmission spectrum (left) of 2D square-PhC slab by 3D PWE and FDTD methods.

Fig. 2
Fig. 2

(a) Scheme of square-PhC slab-edges τC and τC. The air holes at slab-edge τC are shifted and shrunk, which leads to the decreased frequency of surface mode and a mode gap region denoted by the shadow region in (b) is formed. (b) The surface mode dispersion curves under different Δr/a. The r/a ratio difference between slab-edges τC and τC is defined as Δr/a. (c) Scheme of square-PhC HSE interface that forms mirror layers, including the outer mirror τC and gradual mirror τG , while the slab-edge τC is served as the cavity region.

Fig. 3
Fig. 3

The simulated Q factors and mode volumes of the 0th-order (a) DD1 -, (b) DD2 -, and (c) DD3 -modes under different τ. The Δr/a is fixed at 0.03.

Fig. 4
Fig. 4

(a) The simulated Q factor and mode volume of the DD3 -mode under fixed τ of 0.80 and different Δr/a from 0.02 to 0.18. High Q factor and small mode volume of 2.3 × 105 and 0.105 μm3 are obtained when Δr/a = 0.09. (b) The simulated Ex - and Ey -fields of the DD3 -mode in microcavity with τ = 0.80 and Δr/a = 0.09, which are even and odd symmetric to the y-axis (dash line).

Fig. 5
Fig. 5

(a) The simulated Q factor and mode volume of the DD2 -mode under fixed τ of 0.35 and different Δr/a from 0.01 to 0.07. (b) The simulated Ex -fields of the DD2 -mode in microcavities with τ = 0.35 (top) and 0.40 (bottom) and (c) their Ex -field distributions along the dash line in (b).

Fig. 6
Fig. 6

(a) The measured PL spectrum of the InGaAsP MQWs. (b) SEM pictures of the fabricated slab-edges with different τ from 0 to 0.90. (c) Top- and (d) tilted-view SEM pictures of the square-PhC HSE microcavity with τ = 0.40. (e) The zoom-in SEM pictures of cavity τC , gradual mirror τG , and outer mirror τC', which show the well-controlled Δr/a of 0.02.

Fig. 7
Fig. 7

(a) L-L curve and (b) lasing spectrum in dB scale of the DD3 -mode from microcavity with τ = 0.80 and Δr/a = 0.09. The zoom-in SEM pictures of the measured microcavity and the spectrum below threshold are shown as the insets of (a) and (b). (c) Lasing wavelengths of the DD3 -mode under different τ from 0.70 to 0.85 (top), which agree with 3D FDTD simulation results (bottom) quite well.

Fig. 8
Fig. 8

(a) The measured lasing spectra from the HSE microcavity with τ = 0.35 when pumping (top) the cavity and (bottom) the central square-PhC regions. Lasing actions of the 0th-, 1st-order DD2 -modes and BE-mode can be observed when pumping the cavity, while only BE-mode lasing can be observed when pumping the central square-PhC. The zoom-in SEM picture of the measured HSE microcavity with τ = 0.35 is also shown as inset. (b) Comparisons between the 3D FDTD simulated and measured frequencies of the 0th-order DD2 - and BE-modes.

Metrics