Abstract

We report a dual-frequency injection-locked nanosecond pulsed laser oscillating at an arbitrary combination of two frequencies over the broad gain range of a Ti:sapphire laser. This performance is achieved by employing two techniques. One involves introducing two different modulation frequencies to discriminate electronically the error signals, which are used for locking the two seed frequencies to the forced oscillator. The other is a cavity design that enables us to sweep the cavity length without distorting the alignment or changing the spatial mode of the cavity. The difference frequencies in a pair of single-frequency nanosecond pulses can be selected continuously from less than 1 GHz to tens of THz without modifying the laser configuration.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. K. Park, G. Giuliani, and R. L. Byer, “Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking,” Opt. Lett. 5(3), 96–98 (1980).
    [CrossRef] [PubMed]
  2. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
    [CrossRef] [PubMed]
  3. J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
    [CrossRef] [PubMed]
  4. R. M. Measures, Laser Remote Chemical Analysis, (Wiley, New York, 1988).
  5. M. Katsuragawa and Y. Onose, Japan patent, 2004–56879, 2004 March 1.
  6. M. Katsuragawa and T. Onose, “Dual-wavelength injection-locked pulsed laser,” Opt. Lett. 30(18), 2421–2423 (2005).
    [CrossRef] [PubMed]
  7. T. Onose and M. Katsuragawa, “Dual-wavelength injection-locked pulsed laser with highly predictable performance,” Opt. Express 15(4), 1600–1605 (2007).
    [CrossRef] [PubMed]
  8. T. D. Raymond and A. V. Smith, “Two-frequency injection-seeded Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1734–1737 (1995).
    [CrossRef]
  9. D. C. Kao, T. J. Kane, and L. J. Mullen, “Development of an amplitude-modulated Nd:YAG pulsed laser with modulation frequency tunability up to 60 GHz by dual seed injection,” Opt. Lett. 29(11), 1203–1205 (2004).
    [CrossRef] [PubMed]
  10. Y. Fujii and M. Katsuragawa, “Dual-frequency pulsed laser with an accurate gigahertz-beat note,” Opt. Lett. 3, 332–338 (1998).
  11. M. Katsuragawa, K. Yokoyama, T. Onose, and K. Misawa, “Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands,” Opt. Express 13(15), 5628–5634 (2005).
    [CrossRef] [PubMed]
  12. T. Suzuki, M. Hirai, and M. Katsuragawa, “Octave-spanning Raman comb with carrier envelope offset control,” Phys. Rev. Lett. 101(24), 243602 (2008).
    [CrossRef] [PubMed]
  13. L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41(27), 5702–5712 (2002).
    [CrossRef] [PubMed]
  14. A. Ogino, M. Katsuragawa, and K. Hakuta, “Single-Frequency Injection-seeded Pulsed Ti:Al2O3 Ring Laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 8), 5112–5115 (1997).
    [CrossRef]
  15. N. Saito, S. Wada, and H. Tashiro, “Dual-wavelength oscillation in an electronically tuned Ti:sapphire laser,” J. Opt. Soc. Am. B 18(9), 1288–1296 (2001).
    [CrossRef]

2008 (1)

T. Suzuki, M. Hirai, and M. Katsuragawa, “Octave-spanning Raman comb with carrier envelope offset control,” Phys. Rev. Lett. 101(24), 243602 (2008).
[CrossRef] [PubMed]

2007 (1)

T. Onose and M. Katsuragawa, “Dual-wavelength injection-locked pulsed laser with highly predictable performance,” Opt. Express 15(4), 1600–1605 (2007).
[CrossRef] [PubMed]

2005 (2)

M. Katsuragawa and T. Onose, “Dual-wavelength injection-locked pulsed laser,” Opt. Lett. 30(18), 2421–2423 (2005).
[CrossRef] [PubMed]

M. Katsuragawa, K. Yokoyama, T. Onose, and K. Misawa, “Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands,” Opt. Express 13(15), 5628–5634 (2005).
[CrossRef] [PubMed]

2004 (1)

D. C. Kao, T. J. Kane, and L. J. Mullen, “Development of an amplitude-modulated Nd:YAG pulsed laser with modulation frequency tunability up to 60 GHz by dual seed injection,” Opt. Lett. 29(11), 1203–1205 (2004).
[CrossRef] [PubMed]

2002 (1)

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41(27), 5702–5712 (2002).
[CrossRef] [PubMed]

2001 (1)

N. Saito, S. Wada, and H. Tashiro, “Dual-wavelength oscillation in an electronically tuned Ti:sapphire laser,” J. Opt. Soc. Am. B 18(9), 1288–1296 (2001).
[CrossRef]

2000 (2)

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[CrossRef] [PubMed]

1998 (1)

Y. Fujii and M. Katsuragawa, “Dual-frequency pulsed laser with an accurate gigahertz-beat note,” Opt. Lett. 3, 332–338 (1998).

1997 (1)

A. Ogino, M. Katsuragawa, and K. Hakuta, “Single-Frequency Injection-seeded Pulsed Ti:Al2O3 Ring Laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 8), 5112–5115 (1997).
[CrossRef]

1995 (1)

T. D. Raymond and A. V. Smith, “Two-frequency injection-seeded Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1734–1737 (1995).
[CrossRef]

1980 (1)

Y. K. Park, G. Giuliani, and R. L. Byer, “Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking,” Opt. Lett. 5(3), 96–98 (1980).
[CrossRef] [PubMed]

Bretenaker, F.

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41(27), 5702–5712 (2002).
[CrossRef] [PubMed]

Brunel, M.

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41(27), 5702–5712 (2002).
[CrossRef] [PubMed]

Byer, R. L.

Y. K. Park, G. Giuliani, and R. L. Byer, “Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking,” Opt. Lett. 5(3), 96–98 (1980).
[CrossRef] [PubMed]

Dolfi, D.

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41(27), 5702–5712 (2002).
[CrossRef] [PubMed]

Fujii, Y.

Y. Fujii and M. Katsuragawa, “Dual-frequency pulsed laser with an accurate gigahertz-beat note,” Opt. Lett. 3, 332–338 (1998).

Giuliani, G.

Y. K. Park, G. Giuliani, and R. L. Byer, “Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking,” Opt. Lett. 5(3), 96–98 (1980).
[CrossRef] [PubMed]

Hakuta, K.

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[CrossRef] [PubMed]

A. Ogino, M. Katsuragawa, and K. Hakuta, “Single-Frequency Injection-seeded Pulsed Ti:Al2O3 Ring Laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 8), 5112–5115 (1997).
[CrossRef]

Harris, S. E.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

Hirai, M.

T. Suzuki, M. Hirai, and M. Katsuragawa, “Octave-spanning Raman comb with carrier envelope offset control,” Phys. Rev. Lett. 101(24), 243602 (2008).
[CrossRef] [PubMed]

Huignard, J.-P.

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41(27), 5702–5712 (2002).
[CrossRef] [PubMed]

Kane, T. J.

D. C. Kao, T. J. Kane, and L. J. Mullen, “Development of an amplitude-modulated Nd:YAG pulsed laser with modulation frequency tunability up to 60 GHz by dual seed injection,” Opt. Lett. 29(11), 1203–1205 (2004).
[CrossRef] [PubMed]

Kao, D. C.

D. C. Kao, T. J. Kane, and L. J. Mullen, “Development of an amplitude-modulated Nd:YAG pulsed laser with modulation frequency tunability up to 60 GHz by dual seed injection,” Opt. Lett. 29(11), 1203–1205 (2004).
[CrossRef] [PubMed]

Katsuragawa, M.

T. Suzuki, M. Hirai, and M. Katsuragawa, “Octave-spanning Raman comb with carrier envelope offset control,” Phys. Rev. Lett. 101(24), 243602 (2008).
[CrossRef] [PubMed]

T. Onose and M. Katsuragawa, “Dual-wavelength injection-locked pulsed laser with highly predictable performance,” Opt. Express 15(4), 1600–1605 (2007).
[CrossRef] [PubMed]

M. Katsuragawa and T. Onose, “Dual-wavelength injection-locked pulsed laser,” Opt. Lett. 30(18), 2421–2423 (2005).
[CrossRef] [PubMed]

M. Katsuragawa, K. Yokoyama, T. Onose, and K. Misawa, “Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands,” Opt. Express 13(15), 5628–5634 (2005).
[CrossRef] [PubMed]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[CrossRef] [PubMed]

Y. Fujii and M. Katsuragawa, “Dual-frequency pulsed laser with an accurate gigahertz-beat note,” Opt. Lett. 3, 332–338 (1998).

A. Ogino, M. Katsuragawa, and K. Hakuta, “Single-Frequency Injection-seeded Pulsed Ti:Al2O3 Ring Laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 8), 5112–5115 (1997).
[CrossRef]

Kien, F. L.

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[CrossRef] [PubMed]

Lai, N. D.

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41(27), 5702–5712 (2002).
[CrossRef] [PubMed]

Le Floch, A.

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41(27), 5702–5712 (2002).
[CrossRef] [PubMed]

Liang, J. Q.

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[CrossRef] [PubMed]

Misawa, K.

M. Katsuragawa, K. Yokoyama, T. Onose, and K. Misawa, “Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands,” Opt. Express 13(15), 5628–5634 (2005).
[CrossRef] [PubMed]

Morvan, L.

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41(27), 5702–5712 (2002).
[CrossRef] [PubMed]

Mullen, L. J.

D. C. Kao, T. J. Kane, and L. J. Mullen, “Development of an amplitude-modulated Nd:YAG pulsed laser with modulation frequency tunability up to 60 GHz by dual seed injection,” Opt. Lett. 29(11), 1203–1205 (2004).
[CrossRef] [PubMed]

Ogino, A.

A. Ogino, M. Katsuragawa, and K. Hakuta, “Single-Frequency Injection-seeded Pulsed Ti:Al2O3 Ring Laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 8), 5112–5115 (1997).
[CrossRef]

Onose, T.

T. Onose and M. Katsuragawa, “Dual-wavelength injection-locked pulsed laser with highly predictable performance,” Opt. Express 15(4), 1600–1605 (2007).
[CrossRef] [PubMed]

M. Katsuragawa and T. Onose, “Dual-wavelength injection-locked pulsed laser,” Opt. Lett. 30(18), 2421–2423 (2005).
[CrossRef] [PubMed]

M. Katsuragawa, K. Yokoyama, T. Onose, and K. Misawa, “Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands,” Opt. Express 13(15), 5628–5634 (2005).
[CrossRef] [PubMed]

Park, Y. K.

Y. K. Park, G. Giuliani, and R. L. Byer, “Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking,” Opt. Lett. 5(3), 96–98 (1980).
[CrossRef] [PubMed]

Raymond, T. D.

T. D. Raymond and A. V. Smith, “Two-frequency injection-seeded Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1734–1737 (1995).
[CrossRef]

Saito, N.

N. Saito, S. Wada, and H. Tashiro, “Dual-wavelength oscillation in an electronically tuned Ti:sapphire laser,” J. Opt. Soc. Am. B 18(9), 1288–1296 (2001).
[CrossRef]

Smith, A. V.

T. D. Raymond and A. V. Smith, “Two-frequency injection-seeded Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1734–1737 (1995).
[CrossRef]

Sokolov, A. V.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

Suzuki, T.

T. Suzuki, M. Hirai, and M. Katsuragawa, “Octave-spanning Raman comb with carrier envelope offset control,” Phys. Rev. Lett. 101(24), 243602 (2008).
[CrossRef] [PubMed]

Tashiro, H.

N. Saito, S. Wada, and H. Tashiro, “Dual-wavelength oscillation in an electronically tuned Ti:sapphire laser,” J. Opt. Soc. Am. B 18(9), 1288–1296 (2001).
[CrossRef]

Wada, S.

N. Saito, S. Wada, and H. Tashiro, “Dual-wavelength oscillation in an electronically tuned Ti:sapphire laser,” J. Opt. Soc. Am. B 18(9), 1288–1296 (2001).
[CrossRef]

Walker, D. R.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

Yavuz, D. D.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

Yin, G. Y.

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

Yokoyama, K.

M. Katsuragawa, K. Yokoyama, T. Onose, and K. Misawa, “Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands,” Opt. Express 13(15), 5628–5634 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, “Building blocks for a two-frequency laser lidar-radar: a preliminary study,” Appl. Opt. 41(27), 5702–5712 (2002).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

T. D. Raymond and A. V. Smith, “Two-frequency injection-seeded Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1734–1737 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

N. Saito, S. Wada, and H. Tashiro, “Dual-wavelength oscillation in an electronically tuned Ti:sapphire laser,” J. Opt. Soc. Am. B 18(9), 1288–1296 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Ogino, M. Katsuragawa, and K. Hakuta, “Single-Frequency Injection-seeded Pulsed Ti:Al2O3 Ring Laser,” Jpn. J. Appl. Phys. 36(Part 1, No. 8), 5112–5115 (1997).
[CrossRef]

Opt. Express (2)

M. Katsuragawa, K. Yokoyama, T. Onose, and K. Misawa, “Generation of a 10.6-THz ultrahigh-repetition-rate train by synthesizing phase-coherent Raman-sidebands,” Opt. Express 13(15), 5628–5634 (2005).
[CrossRef] [PubMed]

T. Onose and M. Katsuragawa, “Dual-wavelength injection-locked pulsed laser with highly predictable performance,” Opt. Express 15(4), 1600–1605 (2007).
[CrossRef] [PubMed]

Opt. Lett. (4)

M. Katsuragawa and T. Onose, “Dual-wavelength injection-locked pulsed laser,” Opt. Lett. 30(18), 2421–2423 (2005).
[CrossRef] [PubMed]

D. C. Kao, T. J. Kane, and L. J. Mullen, “Development of an amplitude-modulated Nd:YAG pulsed laser with modulation frequency tunability up to 60 GHz by dual seed injection,” Opt. Lett. 29(11), 1203–1205 (2004).
[CrossRef] [PubMed]

Y. Fujii and M. Katsuragawa, “Dual-frequency pulsed laser with an accurate gigahertz-beat note,” Opt. Lett. 3, 332–338 (1998).

Y. K. Park, G. Giuliani, and R. L. Byer, “Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking,” Opt. Lett. 5(3), 96–98 (1980).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett. 85(3), 562–565 (2000).
[CrossRef] [PubMed]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven raman coherence in solid hydrogen,” Phys. Rev. Lett. 85(12), 2474–2477 (2000).
[CrossRef] [PubMed]

T. Suzuki, M. Hirai, and M. Katsuragawa, “Octave-spanning Raman comb with carrier envelope offset control,” Phys. Rev. Lett. 101(24), 243602 (2008).
[CrossRef] [PubMed]

Other (2)

R. M. Measures, Laser Remote Chemical Analysis, (Wiley, New York, 1988).

M. Katsuragawa and Y. Onose, Japan patent, 2004–56879, 2004 March 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the dual-frequency injection-locked nanosecond pulsed laser. PD, photo detector; GCF, green cut filter; OC, output coupler; PET, piezoelectric transducer; PSD: phase sensitive detector; ECLD, external-cavity controlled laser diode.

Fig. 2
Fig. 2

a, Output signals of the photo detector. The red line is a case where only the feedback loop of the frequency, ν1, was activated, and the frequency, ν2, was swept over several FSRs of the forced cavity. The blue line is a case where both the feedback loops of the two seed lasers are activated. b, Error signals at frequencies of ν1, (blue) and ν2, (red), correspond to the red line in a. c, Error signals at frequencies of ν1, (blue) and ν2, (red) correspond to the blue line in a.

Fig. 3
Fig. 3

Spectra of the dual-frequency injection-locked pulsed output in four cases and that for free running oscillation (gray), observed using an optical multi-channel analyzer. The inset is a photo of the output beam taken after dispersing it by a prism.

Fig. 4
Fig. 4

a, Detailed spectra of the dual-frequency injection-locked pulsed output with the two closest oscillation frequencies, measured with a spectrum analyzer. b, The temporal waveform observed with a high-speed real-time measurement system and its power spectrum (inset) obtained by a Fourier transformation of the beat waveform.

Fig. 5
Fig. 5

Power spectra obtained by Fourier transformation of the beat waveforms observed for various cavity lengths of the forced oscillator, which was swept in the 457 – 589 mm range.

Metrics