Abstract

We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Cheville and D. Grischkowsky, “Time domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67(14), 1960 (1995).
    [CrossRef]
  2. R. A. Cheville, R. W. McGowan, and D. R. Grischkowsky, “Late-time target response measured with terahertz impulse ranging,” IEEE Trans. Antenn. Propag. 45(10), 1518–1524 (1997).
    [CrossRef]
  3. K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79(27), 4485 (2001).
    [CrossRef]
  4. T. M. Goyette, J. C. Dickinson, J. Waldman, and W. E. Nixon, “A 1.56THz compact radar range for W-band imagery of scale-model tactical targets, ” Proc. SPIE, Algorithms for Synthetic Aperture Radar Imagery VII, 4053, 615 (2000)
  5. X. J. Zhong, T. J. Cui, Z. Li, Y. B. Tao, and H. Lin, “Terahertz-wave scattering by perfectly electrical conducting objects,” J. Electromagn. Waves Appl. 21(15), 2331–2340 (2007).
    [CrossRef]
  6. J. Pearce and D. M. Mittleman, “Scale model experimentation: using terahertz pulses to study light scattering,” Phys. Med. Biol. 47(21), 3823–3830 (2002).
    [CrossRef] [PubMed]
  7. J. Pearce and D. M. Mittleman, “Using terahertz pulses to study light scattering,” Phys. B 338(1-4), 92–96 (2003).
    [CrossRef]
  8. A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83(15), 3000 (2003).
    [CrossRef]
  9. J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593 (2004).
    [CrossRef]
  10. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
    [CrossRef]
  11. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847 (1984).
    [CrossRef]
  12. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16(8), 1204 (1999).
    [CrossRef]
  13. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523 (1995).
    [CrossRef]
  14. P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), R3052–R3054 (1996).
    [CrossRef] [PubMed]
  15. Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924 (1996).
    [CrossRef]
  16. A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68(2), 150 (1996).
    [CrossRef]
  17. D. Turchinovich and J. I. Dijkhuis, “Performance of combined [100]–[110] ZnTe crystals in an amplified THz time-domain spectrometer,” Opt. Commun. 270(1), 96–99 (2007).
    [CrossRef]
  18. G. Zhao, M. Mors, T. Wenckebach, and P. C. M. Planken, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Am. B 19(6), 1476 (2002).
    [CrossRef]
  19. E. F. Knott, Radar cross section measurements (Van Nostrand Reinhold, New York, 1993).
  20. D. L. Mensa, High resolution radar cross-section imaging (Artech House, Boston, 1991).
  21. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25(3), 377–445 (1908).
    [CrossRef]
  22. M. Born, and E. Wolf, “Diffraction by a Conducting Sphere; Theory of Mie.” §13.5 in Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 7th ed. (Cambridge, England: Cambridge University Press, 1999) p. 633–644.
  23. R. Bracewell, The Hilbert Transform The Fourier Transform and its Applications, 3rd ed. (New York, McGraw-Hill, pp. 267–272, 1999).
  24. J. Pearce, H. Choi, D. M. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30(13), 1653–1655 (2005).
    [CrossRef] [PubMed]
  25. A. C. Kak, and M. Slaney, “Principles of Computerized Tomographic Imaging”, IEEE Press (1988).

2007

X. J. Zhong, T. J. Cui, Z. Li, Y. B. Tao, and H. Lin, “Terahertz-wave scattering by perfectly electrical conducting objects,” J. Electromagn. Waves Appl. 21(15), 2331–2340 (2007).
[CrossRef]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[CrossRef]

D. Turchinovich and J. I. Dijkhuis, “Performance of combined [100]–[110] ZnTe crystals in an amplified THz time-domain spectrometer,” Opt. Commun. 270(1), 96–99 (2007).
[CrossRef]

2005

J. Pearce, H. Choi, D. M. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30(13), 1653–1655 (2005).
[CrossRef] [PubMed]

2004

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593 (2004).
[CrossRef]

2003

J. Pearce and D. M. Mittleman, “Using terahertz pulses to study light scattering,” Phys. B 338(1-4), 92–96 (2003).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83(15), 3000 (2003).
[CrossRef]

2002

J. Pearce and D. M. Mittleman, “Scale model experimentation: using terahertz pulses to study light scattering,” Phys. Med. Biol. 47(21), 3823–3830 (2002).
[CrossRef] [PubMed]

G. Zhao, M. Mors, T. Wenckebach, and P. C. M. Planken, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Am. B 19(6), 1476 (2002).
[CrossRef]

2001

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79(27), 4485 (2001).
[CrossRef]

1999

G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16(8), 1204 (1999).
[CrossRef]

1997

R. A. Cheville, R. W. McGowan, and D. R. Grischkowsky, “Late-time target response measured with terahertz impulse ranging,” IEEE Trans. Antenn. Propag. 45(10), 1518–1524 (1997).
[CrossRef]

1996

P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), R3052–R3054 (1996).
[CrossRef] [PubMed]

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924 (1996).
[CrossRef]

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68(2), 150 (1996).
[CrossRef]

1995

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523 (1995).
[CrossRef]

R. A. Cheville and D. Grischkowsky, “Time domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67(14), 1960 (1995).
[CrossRef]

1984

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847 (1984).
[CrossRef]

1908

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25(3), 377–445 (1908).
[CrossRef]

Almasi, G.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593 (2004).
[CrossRef]

Auston, D. H.

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68(2), 150 (1996).
[CrossRef]

Bartal, B.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593 (2004).
[CrossRef]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847 (1984).
[CrossRef]

Cheville, R. A.

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79(27), 4485 (2001).
[CrossRef]

R. A. Cheville, R. W. McGowan, and D. R. Grischkowsky, “Late-time target response measured with terahertz impulse ranging,” IEEE Trans. Antenn. Propag. 45(10), 1518–1524 (1997).
[CrossRef]

R. A. Cheville and D. Grischkowsky, “Time domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67(14), 1960 (1995).
[CrossRef]

Choi, H.

J. Pearce, H. Choi, D. M. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30(13), 1653–1655 (2005).
[CrossRef] [PubMed]

Cui, T. J.

X. J. Zhong, T. J. Cui, Z. Li, Y. B. Tao, and H. Lin, “Terahertz-wave scattering by perfectly electrical conducting objects,” J. Electromagn. Waves Appl. 21(15), 2331–2340 (2007).
[CrossRef]

Dijkhuis, J. I.

D. Turchinovich and J. I. Dijkhuis, “Performance of combined [100]–[110] ZnTe crystals in an amplified THz time-domain spectrometer,” Opt. Commun. 270(1), 96–99 (2007).
[CrossRef]

Gallot, G.

G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16(8), 1204 (1999).
[CrossRef]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847 (1984).
[CrossRef]

Grischkowsky, D.

G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16(8), 1204 (1999).
[CrossRef]

R. A. Cheville and D. Grischkowsky, “Time domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67(14), 1960 (1995).
[CrossRef]

Grischkowsky, D. R.

R. A. Cheville, R. W. McGowan, and D. R. Grischkowsky, “Late-time target response measured with terahertz impulse ranging,” IEEE Trans. Antenn. Propag. 45(10), 1518–1524 (1997).
[CrossRef]

Hebling, J.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593 (2004).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83(15), 3000 (2003).
[CrossRef]

Heinz, T. F.

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68(2), 150 (1996).
[CrossRef]

Helm, H.

P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), R3052–R3054 (1996).
[CrossRef] [PubMed]

Hoffmann, M. C.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[CrossRef]

Jepsen, P. U.

P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), R3052–R3054 (1996).
[CrossRef] [PubMed]

Keiding, S. R.

P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), R3052–R3054 (1996).
[CrossRef] [PubMed]

Kuhl, J.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593 (2004).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83(15), 3000 (2003).
[CrossRef]

Li, Z.

X. J. Zhong, T. J. Cui, Z. Li, Y. B. Tao, and H. Lin, “Terahertz-wave scattering by perfectly electrical conducting objects,” J. Electromagn. Waves Appl. 21(15), 2331–2340 (2007).
[CrossRef]

Lin, H.

X. J. Zhong, T. J. Cui, Z. Li, Y. B. Tao, and H. Lin, “Terahertz-wave scattering by perfectly electrical conducting objects,” J. Electromagn. Waves Appl. 21(15), 2331–2340 (2007).
[CrossRef]

Litz, M.

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924 (1996).
[CrossRef]

McClatchey, K.

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79(27), 4485 (2001).
[CrossRef]

McGowan, R. W.

R. A. Cheville, R. W. McGowan, and D. R. Grischkowsky, “Late-time target response measured with terahertz impulse ranging,” IEEE Trans. Antenn. Propag. 45(10), 1518–1524 (1997).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25(3), 377–445 (1908).
[CrossRef]

Mittleman, D. M.

J. Pearce, H. Choi, D. M. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30(13), 1653–1655 (2005).
[CrossRef] [PubMed]

J. Pearce and D. M. Mittleman, “Using terahertz pulses to study light scattering,” Phys. B 338(1-4), 92–96 (2003).
[CrossRef]

J. Pearce and D. M. Mittleman, “Scale model experimentation: using terahertz pulses to study light scattering,” Phys. Med. Biol. 47(21), 3823–3830 (2002).
[CrossRef] [PubMed]

Mors, M.

G. Zhao, M. Mors, T. Wenckebach, and P. C. M. Planken, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Am. B 19(6), 1476 (2002).
[CrossRef]

Nahata, A.

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68(2), 150 (1996).
[CrossRef]

Nelson, K. A.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[CrossRef]

Pearce, J.

J. Pearce, H. Choi, D. M. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30(13), 1653–1655 (2005).
[CrossRef] [PubMed]

J. Pearce and D. M. Mittleman, “Using terahertz pulses to study light scattering,” Phys. B 338(1-4), 92–96 (2003).
[CrossRef]

J. Pearce and D. M. Mittleman, “Scale model experimentation: using terahertz pulses to study light scattering,” Phys. Med. Biol. 47(21), 3823–3830 (2002).
[CrossRef] [PubMed]

Planken, P. C. M.

G. Zhao, M. Mors, T. Wenckebach, and P. C. M. Planken, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Am. B 19(6), 1476 (2002).
[CrossRef]

Reiten, M. T.

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79(27), 4485 (2001).
[CrossRef]

Schall, M.

P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), R3052–R3054 (1996).
[CrossRef] [PubMed]

Schyja, V.

P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), R3052–R3054 (1996).
[CrossRef] [PubMed]

Stepanov, A. G.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593 (2004).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83(15), 3000 (2003).
[CrossRef]

Tao, Y. B.

X. J. Zhong, T. J. Cui, Z. Li, Y. B. Tao, and H. Lin, “Terahertz-wave scattering by perfectly electrical conducting objects,” J. Electromagn. Waves Appl. 21(15), 2331–2340 (2007).
[CrossRef]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847 (1984).
[CrossRef]

Turchinovich, D.

D. Turchinovich and J. I. Dijkhuis, “Performance of combined [100]–[110] ZnTe crystals in an amplified THz time-domain spectrometer,” Opt. Commun. 270(1), 96–99 (2007).
[CrossRef]

Wenckebach, T.

G. Zhao, M. Mors, T. Wenckebach, and P. C. M. Planken, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Am. B 19(6), 1476 (2002).
[CrossRef]

White, J.

J. Pearce, H. Choi, D. M. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30(13), 1653–1655 (2005).
[CrossRef] [PubMed]

Winnewisser, C.

P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), R3052–R3054 (1996).
[CrossRef] [PubMed]

Wu, C.

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68(2), 150 (1996).
[CrossRef]

Wu, Q.

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523 (1995).
[CrossRef]

Yeh, K.-L.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[CrossRef]

Zhang, X.-C.

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523 (1995).
[CrossRef]

Zhao, G.

G. Zhao, M. Mors, T. Wenckebach, and P. C. M. Planken, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Am. B 19(6), 1476 (2002).
[CrossRef]

Zhong, X. J.

X. J. Zhong, T. J. Cui, Z. Li, Y. B. Tao, and H. Lin, “Terahertz-wave scattering by perfectly electrical conducting objects,” J. Electromagn. Waves Appl. 21(15), 2331–2340 (2007).
[CrossRef]

Zimdars, D.

J. Pearce, H. Choi, D. M. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30(13), 1653–1655 (2005).
[CrossRef] [PubMed]

Ann. Phys.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25(3), 377–445 (1908).
[CrossRef]

Appl. Phys. B

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593 (2004).
[CrossRef]

Appl. Phys. Lett.

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847 (1984).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523 (1995).
[CrossRef]

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924 (1996).
[CrossRef]

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68(2), 150 (1996).
[CrossRef]

R. A. Cheville and D. Grischkowsky, “Time domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67(14), 1960 (1995).
[CrossRef]

K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79(27), 4485 (2001).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83(15), 3000 (2003).
[CrossRef]

IEEE Trans. Antenn. Propag.

R. A. Cheville, R. W. McGowan, and D. R. Grischkowsky, “Late-time target response measured with terahertz impulse ranging,” IEEE Trans. Antenn. Propag. 45(10), 1518–1524 (1997).
[CrossRef]

J. Electromagn. Waves Appl.

X. J. Zhong, T. J. Cui, Z. Li, Y. B. Tao, and H. Lin, “Terahertz-wave scattering by perfectly electrical conducting objects,” J. Electromagn. Waves Appl. 21(15), 2331–2340 (2007).
[CrossRef]

J. Opt. Soc. Am. B

G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16(8), 1204 (1999).
[CrossRef]

G. Zhao, M. Mors, T. Wenckebach, and P. C. M. Planken, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Am. B 19(6), 1476 (2002).
[CrossRef]

Opt. Commun.

D. Turchinovich and J. I. Dijkhuis, “Performance of combined [100]–[110] ZnTe crystals in an amplified THz time-domain spectrometer,” Opt. Commun. 270(1), 96–99 (2007).
[CrossRef]

Opt. Lett.

J. Pearce, H. Choi, D. M. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30(13), 1653–1655 (2005).
[CrossRef] [PubMed]

Phys. B

J. Pearce and D. M. Mittleman, “Using terahertz pulses to study light scattering,” Phys. B 338(1-4), 92–96 (2003).
[CrossRef]

Phys. Med. Biol.

J. Pearce and D. M. Mittleman, “Scale model experimentation: using terahertz pulses to study light scattering,” Phys. Med. Biol. 47(21), 3823–3830 (2002).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), R3052–R3054 (1996).
[CrossRef] [PubMed]

Other

T. M. Goyette, J. C. Dickinson, J. Waldman, and W. E. Nixon, “A 1.56THz compact radar range for W-band imagery of scale-model tactical targets, ” Proc. SPIE, Algorithms for Synthetic Aperture Radar Imagery VII, 4053, 615 (2000)

A. C. Kak, and M. Slaney, “Principles of Computerized Tomographic Imaging”, IEEE Press (1988).

E. F. Knott, Radar cross section measurements (Van Nostrand Reinhold, New York, 1993).

D. L. Mensa, High resolution radar cross-section imaging (Artech House, Boston, 1991).

M. Born, and E. Wolf, “Diffraction by a Conducting Sphere; Theory of Mie.” §13.5 in Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 7th ed. (Cambridge, England: Cambridge University Press, 1999) p. 633–644.

R. Bracewell, The Hilbert Transform The Fourier Transform and its Applications, 3rd ed. (New York, McGraw-Hill, pp. 267–272, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram of the THz RCS setup. (b) 10 cm-long 1:150-scale metal model of aircraft fighter F-16.

Fig. 2
Fig. 2

(a) THz waveform reflected from a 170mm-diameter metal flat disk. The transient include the main THz pulse (labeled A), a partial reflection of the main pulse inside the detection crystals (labeled B), and a part of the main pulse undergoing multiple reflections in the LiNbO3 crystal (labeled C). (b) The amplitude spectrum of the generated THz radiation obtained as a Fourier transform of a 50 ps-wide time window around transient A.

Fig. 3
Fig. 3

The peak electric field of THz radiation scattered from a conducting sphere as a function of sphere diameter. The red line shows the best linear fit to the experimental data. The horizontal green line represents the average noise level in single scan measurement. The red and green curves intercept at the point corresponding to a sphere of 0.98 mm diameter.

Fig. 4
Fig. 4

Logarithm of the instantaneous amplitude of THz waveforms scattered from the F-16 scale model shown in Fig. 1(b) for different (a) polar and (c) azimuthal angles and (b), (d) their frequency-averaged RCS. Letter marks indicate positions of different scattering parts of the airplane model: nose (N), wing tips (WT), wing surface (WS), vertical tail surface (VTS), vertical tail tip (VTT), fuselage (F), missiles (M1, M2). Additionally letters marks A, B and C show example of the main transient and two echoes (according to Fig. 2 (a)).

Fig. 5
Fig. 5

Frequency-resolved azimuthal RCS of a metal model of the fighter aircraft F-16 at frequencies 0.3, 0.7 and 1.1 THz. The presented data are averaged within a frequency interval of +/− 20GHz.

Fig. 6
Fig. 6

(a) Metal test target (b) Logarithm of the instantaneous amplitude of THz waveforms scattered from the metal test target. (c) Cross section of the test target reconstructed using filtered back projection algorithm (d) Cross section of the test target reconstructed using filtered back projection algorithm with windowing out flat surface reflections.

Fig. 7
Fig. 7

Cross section of the scale model of the F-16 aircraft reconstructed using the filtered back projection algorithm on data from Fig. 4(c) without (a) and with (b) windowing out flat surface reflections. Letter marks indicate positions of different scattering parts of the airplane model: wing tips (WT), wing (W), tail (T), fuselage (F) and missiles (M1, M2).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R C S = lim R 4 π R 2 | E s | 2 | E i | 2 ,
R C S = π r 0 2 0 T | E o b j e c t ( t ) | 2 d t 0 T | E c a l ( t ) | 2 d t 0 T | E b g ( t ) | 2 d t ,
R C S ( ω ) = π r 0 2 | E o b j e c t ( ω ) | 2 | E c a l ( ω ) | 2 | E b g ( ω ) | 2 ,
H { u } ( t ) = 1 π p . v . u ( τ ) t τ d τ ,

Metrics