Abstract

We analyze the trap stiffness and trapping force potential for a nano-cylinder trapped in the optical tweezers against its axial and lateral shift and tilt associated to the natural Brownian motion. We explain the physical properties of the optical trapping by computing and integrating the radiation stress distribution on the nano-cylinder surfaces using the T-matrix approach. Our computation shows that the force stiffness to the lateral shift is several times higher than that to the axial shift of the nano-cylinder, and lateral torque due to the stress on the side-face is 1-2 orders of magnitude higher than that on the end-faces of a nano-cylinder with the aspect ratio of 2 – 20. The torque due to the stress on the nano-cylinder surface is 2-3 orders of magnitude higher than the spin torque. We explain why a nano-cylinder of low aspect ratio is trapped and aligned normal to the trapping beam axis.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Dienerowitz, M. Mazilu, and G. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
    [CrossRef]
  2. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
    [CrossRef] [PubMed]
  3. F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
    [CrossRef] [PubMed]
  4. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9, S196–S203 (2007).
  5. W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
    [CrossRef] [PubMed]
  6. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
    [CrossRef]
  7. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
    [CrossRef]
  8. G. Videen, Light Scattering from a Sphere Near a Plane Interface (Springer, 2000).
  9. C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825 (1999).
    [CrossRef]
  10. J. H. Crichton and P. L. Marston, “The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation,” Electron. J. Differ. Equations Conf. 04, 37 (2000).
  11. K. Okamoto and S. Kawata, “Radiation Force Exerted on Subwavelength Particles near a Nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
    [CrossRef]
  12. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002), p. 307–319.
  13. A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
    [CrossRef] [PubMed]
  14. M. E. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
    [CrossRef]
  15. M. Rodriguez-Otazo, A. Augier-Calderin, J.-P. Galaup, J.-F. Lamère, and S. Fery-Forgues, “High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light,” Appl. Opt. 48(14), 2720–2730 (2009).
    [CrossRef] [PubMed]
  16. F.-W. Sheu, T.-K. Lan, Y.-C. Lin, S. Chen, and C. Ay, “Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers,” Opt. Express 18(14), 14724–14729 (2010).
    [CrossRef] [PubMed]

2010 (2)

A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
[CrossRef] [PubMed]

F.-W. Sheu, T.-K. Lan, Y.-C. Lin, S. Chen, and C. Ay, “Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers,” Opt. Express 18(14), 14724–14729 (2010).
[CrossRef] [PubMed]

2009 (1)

M. Rodriguez-Otazo, A. Augier-Calderin, J.-P. Galaup, J.-F. Lamère, and S. Fery-Forgues, “High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light,” Appl. Opt. 48(14), 2720–2730 (2009).
[CrossRef] [PubMed]

2008 (2)

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

M. Dienerowitz, M. Mazilu, and G. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

2007 (2)

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9, S196–S203 (2007).

2006 (1)

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

2003 (1)

T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[CrossRef]

2000 (1)

J. H. Crichton and P. L. Marston, “The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation,” Electron. J. Differ. Equations Conf. 04, 37 (2000).

1999 (2)

K. Okamoto and S. Kawata, “Radiation Force Exerted on Subwavelength Particles near a Nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825 (1999).
[CrossRef]

1998 (1)

M. E. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

1989 (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[CrossRef]

Augier-Calderin, A.

M. Rodriguez-Otazo, A. Augier-Calderin, J.-P. Galaup, J.-F. Lamère, and S. Fery-Forgues, “High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light,” Appl. Opt. 48(14), 2720–2730 (2009).
[CrossRef] [PubMed]

Ay, C.

F.-W. Sheu, T.-K. Lan, Y.-C. Lin, S. Chen, and C. Ay, “Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers,” Opt. Express 18(14), 14724–14729 (2010).
[CrossRef] [PubMed]

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[CrossRef]

Borghese, F.

A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9, S196–S203 (2007).

Camposeo, A.

A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
[CrossRef] [PubMed]

Chen, S.

F.-W. Sheu, T.-K. Lan, Y.-C. Lin, S. Chen, and C. Ay, “Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers,” Opt. Express 18(14), 14724–14729 (2010).
[CrossRef] [PubMed]

Choi, C. H.

C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825 (1999).
[CrossRef]

Cingolani, R.

A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
[CrossRef] [PubMed]

Crichton, J. H.

J. H. Crichton and P. L. Marston, “The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation,” Electron. J. Differ. Equations Conf. 04, 37 (2000).

Denti, P.

A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Dholakia, G.

M. Dienerowitz, M. Mazilu, and G. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and G. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

Fery-Forgues, S.

M. Rodriguez-Otazo, A. Augier-Calderin, J.-P. Galaup, J.-F. Lamère, and S. Fery-Forgues, “High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light,” Appl. Opt. 48(14), 2720–2730 (2009).
[CrossRef] [PubMed]

Friese, M. E.

M. E. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

Galaup, J.-P.

M. Rodriguez-Otazo, A. Augier-Calderin, J.-P. Galaup, J.-F. Lamère, and S. Fery-Forgues, “High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light,” Appl. Opt. 48(14), 2720–2730 (2009).
[CrossRef] [PubMed]

Gibson, U. J.

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

Gordon, M. S.

C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825 (1999).
[CrossRef]

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9, S196–S203 (2007).

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[CrossRef]

M. E. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

Iatì, M. A.

A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Ivanic, J.

C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825 (1999).
[CrossRef]

Kawata, S.

K. Okamoto and S. Kawata, “Radiation Force Exerted on Subwavelength Particles near a Nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

Knöner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9, S196–S203 (2007).

Lamère, J.-F.

M. Rodriguez-Otazo, A. Augier-Calderin, J.-P. Galaup, J.-F. Lamère, and S. Fery-Forgues, “High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light,” Appl. Opt. 48(14), 2720–2730 (2009).
[CrossRef] [PubMed]

Lan, T.-K.

F.-W. Sheu, T.-K. Lan, Y.-C. Lin, S. Chen, and C. Ay, “Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers,” Opt. Express 18(14), 14724–14729 (2010).
[CrossRef] [PubMed]

Lin, Y.-C.

F.-W. Sheu, T.-K. Lan, Y.-C. Lin, S. Chen, and C. Ay, “Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers,” Opt. Express 18(14), 14724–14729 (2010).
[CrossRef] [PubMed]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9, S196–S203 (2007).

Maragò, O. M.

A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Marston, P. L.

J. H. Crichton and P. L. Marston, “The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation,” Electron. J. Differ. Equations Conf. 04, 37 (2000).

Mazilu, M.

M. Dienerowitz, M. Mazilu, and G. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Neves, A. A. R.

A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
[CrossRef] [PubMed]

Nieminen, T. A.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9, S196–S203 (2007).

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[CrossRef]

M. E. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

Okamoto, K.

K. Okamoto and S. Kawata, “Radiation Force Exerted on Subwavelength Particles near a Nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Pagliara, S.

A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
[CrossRef] [PubMed]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Pisignano, D.

A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
[CrossRef] [PubMed]

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Rodriguez-Otazo, M.

M. Rodriguez-Otazo, A. Augier-Calderin, J.-P. Galaup, J.-F. Lamère, and S. Fery-Forgues, “High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light,” Appl. Opt. 48(14), 2720–2730 (2009).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9, S196–S203 (2007).

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[CrossRef]

M. E. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

Ruedenberg, K.

C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825 (1999).
[CrossRef]

Saija, R.

A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
[CrossRef] [PubMed]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[CrossRef]

Sheu, F.-W.

F.-W. Sheu, T.-K. Lan, Y.-C. Lin, S. Chen, and C. Ay, “Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers,” Opt. Express 18(14), 14724–14729 (2010).
[CrossRef] [PubMed]

Singer, W.

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

Stilgoe, A. B.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9, S196–S203 (2007).

Yang, P.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

M. Rodriguez-Otazo, A. Augier-Calderin, J.-P. Galaup, J.-F. Lamère, and S. Fery-Forgues, “High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light,” Appl. Opt. 48(14), 2720–2730 (2009).
[CrossRef] [PubMed]

Electron. J. Differ. Equations Conf. (1)

J. H. Crichton and P. L. Marston, “The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation,” Electron. J. Differ. Equations Conf. 04, 37 (2000).

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989).
[CrossRef]

J. Chem. Phys. (1)

C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825 (1999).
[CrossRef]

J. Nanophoton. (1)

M. Dienerowitz, M. Mazilu, and G. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9, S196–S203 (2007).

J. Quant. Spectrosc. Radiat. Transf. (1)

T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003).
[CrossRef]

Nature (1)

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

F.-W. Sheu, T.-K. Lan, Y.-C. Lin, S. Chen, and C. Ay, “Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers,” Opt. Express 18(14), 14724–14729 (2010).
[CrossRef] [PubMed]

A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

M. E. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

K. Okamoto and S. Kawata, “Radiation Force Exerted on Subwavelength Particles near a Nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

Other (2)

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002), p. 307–319.

G. Videen, Light Scattering from a Sphere Near a Plane Interface (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Nano-cylinder fixed in the spherical coordinate system for calculating forces and torques.

Fig. 2
Fig. 2

Stress distribution on a nano-cylinder of radius R = 50 nm at equilibrium position with (a) Beam along the z-axis; (b) Beam shifted to x = 50nm; (c) Axial force and axial stiffness as a function of position of the focus in the z-axis for radius R = 300 nm; (d) Lateral foce and lateral stiffness as a function of shift distance from the x-axis for a length H = 1 μm.

Fig. 3
Fig. 3

Axial stiffness as a function of length for (a) radius R = 50 – 100 nm; (b) R = 300nm; as a function of (c) radius for length H = 200–1000 nm; and (d) NA for R = 100nm and H = 1μm.

Fig. 4
Fig. 4

Lateral stiffness as a function of length for (a) radius R = 50-100nm; and (b) R = 300nm; as a function of (c) radius for length H = 200-1000 nm; and (d) NA for R = 100nm and H = 1μm.

Fig. 5
Fig. 5

(a) Spin torque τz, (b) Lateral torque τy. (c) Stress distribution in the situation of (b) with nano-cylinder R = 100 nm and H = 1 μm; (d) Stress distribution on a nano-cylinder aligned along the x-axis with the beam tilted by β = 40° with respect to the nano-cylinder axis, R = 25 nm and H = 100 nm.

Fig. 6
Fig. 6

Lateral force Fx and grandient dFx /dx for a nano-cylinder tilted by ± 40° for H = 2.8μm and (a) R = 300 nm, (b) R = 70 nm.

Fig. 7
Fig. 7

Lateral torque as a function of tilt angle for a nano-cylinder of radius R = 50 nm.

Fig. 8
Fig. 8

Lateral torque τy and its gradient ∂τy /∂β as a function of tilt angle for a nano-cylinder of: (a) R = 50 nm and H = 900 nm; (b) R = 25 nm and H = 100 nm.

Fig. 9
Fig. 9

(a) Spin torque and (b) lateral torque as a function of tilt angle for R = 50nm and H = 500 nm to1.1 μm; (c) lateral and spin torques for R = 25nm and H = 100nm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E i n c ( r ) = n = 1 N max m = n n a n m R g M n m ( k r ) + b n m R g N n m ( k r ) E int ( r ) = n = 1 N max m = n n c n m R g M n m ( k r ) + d n m R g N n m ( k r ) E s c a t ( r ) = n = 1 N max m = n n p n m M n m ( 1 ) ( k r ) + q n m N n m ( 1 ) ( k r )
[ p q ] = [ T 11 T 12 T 21 T 22 ] [ a b ] [ c d ] = [ T I 11 T I 12 T I 21 T I 22 ] [ a b ]
E i n c / / = E s c a t / / + E int / / H i n c / / = H s c a t / / + H int / /
F = 1 2 Re S d S n T τ = 1 2 Re S d S n T × r
F z = ε 0 2 k 0 ( 2 ( n + 1 ) n ( n + 2 ) ( n m + 1 ) ( n + m + 1 ) ( 2 n + 1 ) ( 2 n + 3 ) Im ( p ˜ n m p ˜ n + 1 m * + q ˜ n m q ˜ n + 1 m * a ˜ n m a ˜ n + 1 m * b ˜ n m b ˜ n + 1 m * ) 2 m n ( n + 1 ) Im ( i q ˜ n m p ˜ n m * i b ˜ n m a ˜ n m * ) )
F x = ε 0 2 k 0 ( 1 ( n + 1 ) n ( n + 2 ) ( n + m + 1 ) ( n + m + 2 ) ( 2 n + 1 ) ( 2 n + 3 ) Im ( p ˜ n m p ˜ n + 1 m + 1 * + q ˜ n m q ˜ n + 1 m + 1 * a ˜ n m a ˜ n + 1 m + 1 * b ˜ n m b ˜ n + 1 m + 1 * ) + 1 ( n + 1 ) n ( n + 2 ) ( n m ) ( n m + 1 ) ( 2 n + 1 ) ( 2 n + 3 ) Im ( p ˜ n + 1 m p ˜ n m + 1 * + q ˜ n + 1 m q ˜ n m + 1 * a ˜ n + 1 m a ˜ n m + 1 * b ˜ n + 1 m b ˜ n m + 1 * ) ( n m ) ( n + m + 1 ) n ( n + 1 ) Im ( i b ˜ n m a ˜ n m + 1 * i p ˜ n m q ˜ n m + 1 * + i q ˜ n m p ˜ n m + 1 * i a ˜ n m b ˜ n m + 1 * ) )
τ Z = ε 0 2 k 0 n = 1 N max m = n n m ( | a ˜ n m | 2 + | b ˜ n m | 2 | p ˜ n m | 2 | q ˜ n m | 2 )
τ = S d S σ ( ϕ , z ) r × n
σ = 1 2 ( n 2 2 n 1 2 ) ( n 1 2 n 2 2 E 1 n 2 + E 1 t 2 ) n

Metrics