Abstract

Using hyperspectral measurements made in the field, we show that the effective sea-surface reflectance ρ (defined as the ratio of the surface-reflected radiance at the specular direction corresponding to the downwelling sky radiance from one direction) varies not only for different measurement scans, but also can differ by a factor of 8 between 400 nm and 800 nm for the same scan. This means that the derived water-leaving radiance (or remote-sensing reflectance) can be highly inaccurate if a spectrally constant ρ value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote-sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear blue water to turbid brown water are obtainable from above-surface measurements, even under conditions of high waves.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Morel, “In-water and remote measurements of ocean color,” Boundary-Layer Meteorol. 18(2), 177–201 (1980).
    [CrossRef]
  2. S. B. Hooker, G. Lazin, G. Zibordi, and S. D. McLean, “An Evaluation of Above- and In-Water Methods for Determining Water-Leaving Radiances,” J. Atmos. Ocean. Technol. 19(4), 486–515 (2002).
    [CrossRef]
  3. G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, and I. Slutsker, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(293), 297 (2006).
    [CrossRef]
  4. G. Zibordi, S. B. Hooker, J. F. Berthon, and D. DʼAlimonte, “Autonomous Above-Water Radiance Measurements from an Offshore Platform: A Field Assessment Experiment,” J. Atmos. Ocean. Technol. 19(5), 808–819 (2002).
    [CrossRef]
  5. S. B. Hooker, G. Zibordi, J.-F. Berthon, and J. W. Brown, “Above-water radiometry in shallow coastal waters,” Appl. Opt. 43(21), 4254–4268 (2004).
    [CrossRef] [PubMed]
  6. R. C. Smith, C. R. Booth, and J. L. Star, “Oceanographic biooptical profiling system,” Appl. Opt. 23(16), 2791–2797 (1984).
    [CrossRef] [PubMed]
  7. D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt. 39(3), 456–469 (2000).
    [CrossRef]
  8. J. L. Mueller, and R. W. Austin, eds., Ocean Optics Protocols for SeaWiFS Validation, Revision 1, NASA Tech. Memo. 104566 (NASA, Goddard Space Flight Center, Greenbelt, Maryland, 1995), Vol. 25, p. 67.
  9. K. L. Carder and R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30(2), 286–298 (1985).
    [CrossRef]
  10. J. L. Mueller, C. Davis, R. Arnone, R. Frouin, K. L. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and S. McLean, “Above-water radiance and remote sensing reflectance measurement and analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3, NASA/TM-2002–210004, J. L. Mueller and G. S. Fargion, eds. (2002), pp. 171–182.
  11. G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An Autonomous Above-Water System for the Validation of Ocean Color Radiance Data,” IEEE Trans. Geosci. Rem. Sens. 42(2), 401–415 (2004).
    [CrossRef]
  12. G. Zibordi, J.-F. Berthon, F. Mélin, D. D'Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
    [CrossRef]
  13. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
    [CrossRef]
  14. R. W. Austin, “Inherent spectral radiance signatures of the ocean surface,” in Ocean Color Analysis, S. W. Duntley, ed. (Scripps Inst. Oceanogr., San Diego, 1974), pp. 1–20.
  15. R. G. Steward, K. L. Carder, and T. G. Peacock, “High resolution in water optical spectrometry using the Submersible Upwelling and Downwelling Spectrometer (SUDS),” presented at the EOS AGU-ASLO, San Diego, CA, February 21–25, 1994.
  16. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
    [CrossRef]
  17. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20(2), 177–184 (1981).
    [CrossRef] [PubMed]
  18. G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
    [CrossRef]
  19. Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” presented at the Ocean Optics XIII, 1996.
  20. Z. P. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).
  21. C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100(C7), 13279–13294 (1995).
    [CrossRef]
  22. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999).
    [CrossRef]
  23. R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99(C4), 7457–7466 (1994).
    [CrossRef]
  24. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
    [CrossRef] [PubMed]
  25. E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. 111, C03011 (2006), doi:03010.01029/02005JC002880.
  26. Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106(C6), 11639–11651 (2001).
    [CrossRef]
  27. Y.-H. Ahn, J.-H. Ryu, and J.-E. Moon, “Development of redtide & water turbidity algorithms using ocean color satellite,” KORDI Report No. BSPE 98721–00–1224–01, KORDI, Seoul, Korea (1999).
  28. A Microsoft Excel template of this processing scheme is available for interested practitioners.

2009 (2)

G. Zibordi, J.-F. Berthon, F. Mélin, D. D'Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[CrossRef]

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

2007 (1)

Z. P. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).

2006 (1)

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, and I. Slutsker, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(293), 297 (2006).
[CrossRef]

2004 (2)

S. B. Hooker, G. Zibordi, J.-F. Berthon, and J. W. Brown, “Above-water radiometry in shallow coastal waters,” Appl. Opt. 43(21), 4254–4268 (2004).
[CrossRef] [PubMed]

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An Autonomous Above-Water System for the Validation of Ocean Color Radiance Data,” IEEE Trans. Geosci. Rem. Sens. 42(2), 401–415 (2004).
[CrossRef]

2002 (3)

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[CrossRef] [PubMed]

G. Zibordi, S. B. Hooker, J. F. Berthon, and D. DʼAlimonte, “Autonomous Above-Water Radiance Measurements from an Offshore Platform: A Field Assessment Experiment,” J. Atmos. Ocean. Technol. 19(5), 808–819 (2002).
[CrossRef]

S. B. Hooker, G. Lazin, G. Zibordi, and S. D. McLean, “An Evaluation of Above- and In-Water Methods for Determining Water-Leaving Radiances,” J. Atmos. Ocean. Technol. 19(4), 486–515 (2002).
[CrossRef]

2001 (2)

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106(C6), 11639–11651 (2001).
[CrossRef]

2000 (1)

D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt. 39(3), 456–469 (2000).
[CrossRef]

1999 (2)

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999).
[CrossRef]

1995 (1)

C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100(C7), 13279–13294 (1995).
[CrossRef]

1994 (1)

R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99(C4), 7457–7466 (1994).
[CrossRef]

1985 (1)

K. L. Carder and R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30(2), 286–298 (1985).
[CrossRef]

1984 (1)

R. C. Smith, C. R. Booth, and J. L. Star, “Oceanographic biooptical profiling system,” Appl. Opt. 23(16), 2791–2797 (1984).
[CrossRef] [PubMed]

1981 (1)

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20(2), 177–184 (1981).
[CrossRef] [PubMed]

1980 (1)

A. Morel, “In-water and remote measurements of ocean color,” Boundary-Layer Meteorol. 18(2), 177–201 (1980).
[CrossRef]

Arnone, R.

Z. P. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).

Baker, K. S.

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20(2), 177–184 (1981).
[CrossRef] [PubMed]

Berthon, J. F.

G. Zibordi, S. B. Hooker, J. F. Berthon, and D. DʼAlimonte, “Autonomous Above-Water Radiance Measurements from an Offshore Platform: A Field Assessment Experiment,” J. Atmos. Ocean. Technol. 19(5), 808–819 (2002).
[CrossRef]

Berthon, J.-F.

G. Zibordi, J.-F. Berthon, F. Mélin, D. D'Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[CrossRef]

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, and I. Slutsker, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(293), 297 (2006).
[CrossRef]

S. B. Hooker, G. Zibordi, J.-F. Berthon, and J. W. Brown, “Above-water radiometry in shallow coastal waters,” Appl. Opt. 43(21), 4254–4268 (2004).
[CrossRef] [PubMed]

Booth, C. R.

R. C. Smith, C. R. Booth, and J. L. Star, “Oceanographic biooptical profiling system,” Appl. Opt. 23(16), 2791–2797 (1984).
[CrossRef] [PubMed]

Brown, J. W.

S. B. Hooker, G. Zibordi, J.-F. Berthon, and J. W. Brown, “Above-water radiometry in shallow coastal waters,” Appl. Opt. 43(21), 4254–4268 (2004).
[CrossRef] [PubMed]

Carder, K. L.

Z. P. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).

Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106(C6), 11639–11651 (2001).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999).
[CrossRef]

K. L. Carder and R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30(2), 286–298 (1985).
[CrossRef]

Chen, R. F.

Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106(C6), 11639–11651 (2001).
[CrossRef]

D’Alimonte, D.

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An Autonomous Above-Water System for the Validation of Ocean Color Radiance Data,” IEEE Trans. Geosci. Rem. Sens. 42(2), 401–415 (2004).
[CrossRef]

D'Alimonte, D.

G. Zibordi, J.-F. Berthon, F. Mélin, D. D'Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[CrossRef]

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

G. Zibordi, S. B. Hooker, J. F. Berthon, and D. DʼAlimonte, “Autonomous Above-Water Radiance Measurements from an Offshore Platform: A Field Assessment Experiment,” J. Atmos. Ocean. Technol. 19(5), 808–819 (2002).
[CrossRef]

Doerffer, R.

R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99(C4), 7457–7466 (1994).
[CrossRef]

Fabbri, B. E.

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

Feng, H.

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

Fischer, J.

R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99(C4), 7457–7466 (1994).
[CrossRef]

Giles, D.

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

He, M.

Z. P. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).

Holben, B.

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, and I. Slutsker, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(293), 297 (2006).
[CrossRef]

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An Autonomous Above-Water System for the Validation of Ocean Color Radiance Data,” IEEE Trans. Geosci. Rem. Sens. 42(2), 401–415 (2004).
[CrossRef]

Hooker, S. B.

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, and I. Slutsker, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(293), 297 (2006).
[CrossRef]

S. B. Hooker, G. Zibordi, J.-F. Berthon, and J. W. Brown, “Above-water radiometry in shallow coastal waters,” Appl. Opt. 43(21), 4254–4268 (2004).
[CrossRef] [PubMed]

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An Autonomous Above-Water System for the Validation of Ocean Color Radiance Data,” IEEE Trans. Geosci. Rem. Sens. 42(2), 401–415 (2004).
[CrossRef]

G. Zibordi, S. B. Hooker, J. F. Berthon, and D. DʼAlimonte, “Autonomous Above-Water Radiance Measurements from an Offshore Platform: A Field Assessment Experiment,” J. Atmos. Ocean. Technol. 19(5), 808–819 (2002).
[CrossRef]

S. B. Hooker, G. Lazin, G. Zibordi, and S. D. McLean, “An Evaluation of Above- and In-Water Methods for Determining Water-Leaving Radiances,” J. Atmos. Ocean. Technol. 19(4), 486–515 (2002).
[CrossRef]

Kaitala, S.

G. Zibordi, J.-F. Berthon, F. Mélin, D. D'Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[CrossRef]

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

Lazin, G.

S. B. Hooker, G. Lazin, G. Zibordi, and S. D. McLean, “An Evaluation of Above- and In-Water Methods for Determining Water-Leaving Radiances,” J. Atmos. Ocean. Technol. 19(4), 486–515 (2002).
[CrossRef]

Lee, Z.

Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106(C6), 11639–11651 (2001).
[CrossRef]

Lee, Z. P.

Z. P. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999).
[CrossRef]

Maritorena, S.

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[CrossRef] [PubMed]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

McLean, S. D.

S. B. Hooker, G. Lazin, G. Zibordi, and S. D. McLean, “An Evaluation of Above- and In-Water Methods for Determining Water-Leaving Radiances,” J. Atmos. Ocean. Technol. 19(4), 486–515 (2002).
[CrossRef]

Melin, F.

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

Mélin, F.

G. Zibordi, J.-F. Berthon, F. Mélin, D. D'Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[CrossRef]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, and I. Slutsker, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(293), 297 (2006).
[CrossRef]

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An Autonomous Above-Water System for the Validation of Ocean Color Radiance Data,” IEEE Trans. Geosci. Rem. Sens. 42(2), 401–415 (2004).
[CrossRef]

Menzies, D. W.

D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt. 39(3), 456–469 (2000).
[CrossRef]

Mobley, C. D.

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999).
[CrossRef]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[CrossRef]

Morel, A.

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

A. Morel, “In-water and remote measurements of ocean color,” Boundary-Layer Meteorol. 18(2), 177–201 (1980).
[CrossRef]

Neumann, M. J.

D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt. 39(3), 456–469 (2000).
[CrossRef]

Patch, J. S.

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999).
[CrossRef]

Peacock, T. G.

Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106(C6), 11639–11651 (2001).
[CrossRef]

Perry, M. J.

C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100(C7), 13279–13294 (1995).
[CrossRef]

Peterson, A. R.

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[CrossRef] [PubMed]

Roesler, C. S.

C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100(C7), 13279–13294 (1995).
[CrossRef]

Schuster, G.

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

Seppala, J.

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

Siegel, D. A.

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[CrossRef] [PubMed]

D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt. 39(3), 456–469 (2000).
[CrossRef]

Slutsker, I.

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, and I. Slutsker, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(293), 297 (2006).
[CrossRef]

Smith, R. C.

D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt. 39(3), 456–469 (2000).
[CrossRef]

R. C. Smith, C. R. Booth, and J. L. Star, “Oceanographic biooptical profiling system,” Appl. Opt. 23(16), 2791–2797 (1984).
[CrossRef] [PubMed]

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20(2), 177–184 (1981).
[CrossRef] [PubMed]

Star, J. L.

R. C. Smith, C. R. Booth, and J. L. Star, “Oceanographic biooptical profiling system,” Appl. Opt. 23(16), 2791–2797 (1984).
[CrossRef] [PubMed]

Steward, R. G.

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999).
[CrossRef]

K. L. Carder and R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30(2), 286–298 (1985).
[CrossRef]

Toole, D. A.

D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt. 39(3), 456–469 (2000).
[CrossRef]

Vandemark, D.

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

Zibordi, G.

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

G. Zibordi, J.-F. Berthon, F. Mélin, D. D'Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[CrossRef]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, and I. Slutsker, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(293), 297 (2006).
[CrossRef]

S. B. Hooker, G. Zibordi, J.-F. Berthon, and J. W. Brown, “Above-water radiometry in shallow coastal waters,” Appl. Opt. 43(21), 4254–4268 (2004).
[CrossRef] [PubMed]

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An Autonomous Above-Water System for the Validation of Ocean Color Radiance Data,” IEEE Trans. Geosci. Rem. Sens. 42(2), 401–415 (2004).
[CrossRef]

G. Zibordi, S. B. Hooker, J. F. Berthon, and D. DʼAlimonte, “Autonomous Above-Water Radiance Measurements from an Offshore Platform: A Field Assessment Experiment,” J. Atmos. Ocean. Technol. 19(5), 808–819 (2002).
[CrossRef]

S. B. Hooker, G. Lazin, G. Zibordi, and S. D. McLean, “An Evaluation of Above- and In-Water Methods for Determining Water-Leaving Radiances,” J. Atmos. Ocean. Technol. 19(4), 486–515 (2002).
[CrossRef]

Appl. Opt. (7)

S. B. Hooker, G. Zibordi, J.-F. Berthon, and J. W. Brown, “Above-water radiometry in shallow coastal waters,” Appl. Opt. 43(21), 4254–4268 (2004).
[CrossRef] [PubMed]

R. C. Smith, C. R. Booth, and J. L. Star, “Oceanographic biooptical profiling system,” Appl. Opt. 23(16), 2791–2797 (1984).
[CrossRef] [PubMed]

D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt. 39(3), 456–469 (2000).
[CrossRef]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20(2), 177–184 (1981).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999).
[CrossRef]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002).
[CrossRef] [PubMed]

Boundary-Layer Meteorol. (1)

A. Morel, “In-water and remote measurements of ocean color,” Boundary-Layer Meteorol. 18(2), 177–201 (1980).
[CrossRef]

Eos Trans. AGU (1)

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, and I. Slutsker, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(293), 297 (2006).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (1)

G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An Autonomous Above-Water System for the Validation of Ocean Color Radiance Data,” IEEE Trans. Geosci. Rem. Sens. 42(2), 401–415 (2004).
[CrossRef]

J. Atmos. Ocean. Technol. (3)

G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[CrossRef]

G. Zibordi, S. B. Hooker, J. F. Berthon, and D. DʼAlimonte, “Autonomous Above-Water Radiance Measurements from an Offshore Platform: A Field Assessment Experiment,” J. Atmos. Ocean. Technol. 19(5), 808–819 (2002).
[CrossRef]

S. B. Hooker, G. Lazin, G. Zibordi, and S. D. McLean, “An Evaluation of Above- and In-Water Methods for Determining Water-Leaving Radiances,” J. Atmos. Ocean. Technol. 19(4), 486–515 (2002).
[CrossRef]

J. Geophys. Res. (4)

Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106(C6), 11639–11651 (2001).
[CrossRef]

R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99(C4), 7457–7466 (1994).
[CrossRef]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[CrossRef]

C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100(C7), 13279–13294 (1995).
[CrossRef]

Limnol. Oceanogr. (1)

K. L. Carder and R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30(2), 286–298 (1985).
[CrossRef]

Remote Sens. Environ. (1)

G. Zibordi, J.-F. Berthon, F. Mélin, D. D'Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[CrossRef]

Sensors (Basel Switzerland) (1)

Z. P. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).

Other (8)

Y.-H. Ahn, J.-H. Ryu, and J.-E. Moon, “Development of redtide & water turbidity algorithms using ocean color satellite,” KORDI Report No. BSPE 98721–00–1224–01, KORDI, Seoul, Korea (1999).

A Microsoft Excel template of this processing scheme is available for interested practitioners.

E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. 111, C03011 (2006), doi:03010.01029/02005JC002880.

J. L. Mueller, C. Davis, R. Arnone, R. Frouin, K. L. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and S. McLean, “Above-water radiance and remote sensing reflectance measurement and analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3, NASA/TM-2002–210004, J. L. Mueller and G. S. Fargion, eds. (2002), pp. 171–182.

Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” presented at the Ocean Optics XIII, 1996.

R. W. Austin, “Inherent spectral radiance signatures of the ocean surface,” in Ocean Color Analysis, S. W. Duntley, ed. (Scripps Inst. Oceanogr., San Diego, 1974), pp. 1–20.

R. G. Steward, K. L. Carder, and T. G. Peacock, “High resolution in water optical spectrometry using the Submersible Upwelling and Downwelling Spectrometer (SUDS),” presented at the EOS AGU-ASLO, San Diego, CA, February 21–25, 1994.

J. L. Mueller, and R. W. Austin, eds., Ocean Optics Protocols for SeaWiFS Validation, Revision 1, NASA Tech. Memo. 104566 (NASA, Goddard Space Flight Center, Greenbelt, Maryland, 1995), Vol. 25, p. 67.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic illustration of above-surface measurement of LT . (b) Example of roughened sea surface when looking down from an above-surface platform. The different shades of blue result from light reflected from different parts of the sky.

Fig. 2
Fig. 2

Measured Trs (a) and Srs (b).

Fig. 3
Fig. 3

ρ values calculated from measured Trs and Srs . Rrs was modeled with Chl = 0.05 mg m−3 based on the bio-optical model of Morel and Maritorena [16].

Fig. 4
Fig. 4

Similar as Fig. 3, but with two different Chl values. Green: Chl = 0.05 mg m−3; blue, Chl = 0.1 mg m−3.

Fig. 5
Fig. 5

Scatter plot between ρ(Chl = 0.05) and ρ(Chl = 0.025), blue symbol; and between ρ(Chl = 0.05) and ρ(Chl = 0.1), green symbol.

Fig. 8
Fig. 8

Color photos of the river water (a) and sky (b) measured on September 13, 2010, ~11 am local time.

Fig. 6
Fig. 6

Average Rrs (solid blue) and the one standard deviation (dotted lines), calculated using Eq. (4b). Green line is modeled Rrs with Chl = 0.05 mg m−3 using the Morel-Maritorena bio-optical model [16].

Fig. 7
Fig. 7

Similar as Fig. 6, but Rrs was calculated based on Eq. (9) and with a spectral optimization scheme. Green line is modeled Rrs with Chl = 0.05 mg m−3 using the Morel-Maritorena [16] bio-optical model.

Fig. 9
Fig. 9

Scheme to measure LW directly (re-drawn from Ahn et al [27]). The open box is a black tube to block surface reflected light, which is inserted just below (~5 cm) the surface when measuring LW .

Fig. 10
Fig. 10

Comparison between directly measured Rrs (blue line) of water showing in Fig. 8(a) and Rrs obtained after correcting surface-reflected light.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

L T ( λ , θ , φ ) = L W ( λ , θ , φ ) + i w i F ( θ i ' , φ i ' , θ , φ ) L S k y ( λ , θ i ' , φ i ' ) .
L T ( λ , θ , φ ) = L W ( λ , θ , φ ) + ρ ( θ , φ ) L S k y ( λ , θ ' , φ ) .
ρ ( θ , φ ) = i w i F ( θ i ' , φ i ' , θ , φ , ) L S k y ( λ , θ i ' , φ i ' ) L S k y ( λ , θ ' , φ ) ,
ρ ( θ , φ ) = L T ( λ , θ , φ ) L w ( λ , θ , φ ) L S k y ( λ , θ ' , φ ) .
T r s ( λ , θ , φ ) = R r s ( λ , θ , φ ) + ρ ( θ , φ ) S r s ( λ , θ ' , φ ) ,
R r s ( λ , θ , φ ) = T r s ( λ , θ , φ ) ρ ( θ , φ ) S r s ( λ , θ ' , φ ) .
ρ ( θ , φ ) = T r s ( λ , θ , φ ) R r s ( λ , θ , φ ) S r s ( λ , θ ' , φ ) .
L T ( λ , θ , φ ) = L W ( λ , θ , φ ) + w 0 F ( θ , φ ) L S k y ( λ , θ ' , φ ) + i 1 w i F ( θ i ' , φ i ' , θ , φ ) L S k y ( λ , θ i ' , φ i ' ) .
L T ( λ , θ , φ ) L W ( λ , θ , φ ) + F ( θ , φ ) L S k y ( λ , θ ' , φ ) + i 1 w i F ( θ i ' , φ i ' , θ , φ ) L s k y ( λ , θ i ' , φ i ' ) ,
T r s ( λ , θ , φ ) R r s ( λ , θ , φ ) + F ( θ , φ ) S r s ( λ , θ ' , φ ) + i 1 w i F ( θ i ' , φ i ' , θ , φ ) S r s ( λ , θ i ' , φ i ' ) .
T r s ( λ , θ , φ ) R r s ( λ , θ , φ ) + F ( θ , φ ) S r s ( λ , θ ' , φ ) + Δ ( θ , φ ) ,
R r s ( λ , θ , φ ) T r s ( λ , θ , φ ) F ( θ , φ ) S r s ( λ , θ ' , φ ) Δ ( θ , φ ) .
R r s ( λ , θ , φ ) F u n ( a ( λ ) , b b ( λ ) , θ , φ ) ,
{ R r s ( λ 1 , θ , φ ) F u n ( a w ( λ 1 ) , b b w ( λ 1 ) , P , G , X , θ , φ ) , R r s ( λ 2 , θ , φ ) F u n ( a w ( λ 2 ) , b b w ( λ 2 ) , P , G , X , θ , φ ) , . R r s ( λ n , θ , φ ) F u n ( a w ( λ n ) , b b w ( λ n ) , P , G , X , θ , φ ) .
E r r = [ 400 675 ( R r s R ˜ r s ) 2 + 750 800 ( R r s R ˜ r s ) 2 ] 0.5 400 675 R r s + 750 800 R r s ,

Metrics