Abstract

One method of hardening optical glasses against radiation-induced darkening has been to add CeO2 to the batch composition. In the present investigation we prepared a series of lanthanum crown glasses with varying degrees of CeO2 additions and melted them at 1,400°C with and without bubbling oxygen gas. We examined the influence of added oxygen on the optical transmissions of these glasses in the spectral range 460 to 760 nm following gamma irradiations ranging from 10 to 250 krad. The results showed that dose-for-dose the radiation-induced optical attenuations of the oxidized glasses were greater than for the glasses without added O2.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. F. Pellicori, E. E. Russell, and L. A. Watts, “Radiation induced transmission loss in optical materials,” Appl. Opt. 18(15), 2618–2621 (1979).
    [CrossRef] [PubMed]
  2. D. L. Griscom, M. E. Gingerich, E. J. Friebele, M. Putnam, and W. Unruh, “Fast-neutron radiation effects in a silica-core optical fiber studied by a CCD-camera spectrometer,” Appl. Opt. 33(6), 1022–1028 (1994).
    [PubMed]
  3. A. Gusarov, D. Doyle, L. Glebov, and F. Berghmans, “Radiation-induced transmission degradation of borosilicate crown optical glass from four different manufacturers,” Opt. Eng. 46(4), 043004 (2007).
    [CrossRef]
  4. S. M. A. Khtar, M. Ashraf, and S. H. Khan, “A study of neutron and gamma radiation effect s on t ransmission of various types of glasses, optical coatings, cemented optics and fiber,” J. Opt. Mater. 29, 1591–1603 (2007).
  5. http://www.schott.com/advanced_optics/english/download/schott_tie-42_radiation_resistant_glasses _august _2007_en.pdf .
  6. B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1-4), 384–386 (1992).
    [CrossRef]
  7. E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2eV in irradiated and drawn synthetic silica,” J. Non-Cryst. Solids 71(1-3), 133–144 (1985).
    [CrossRef]
  8. M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada, and S. Yamaguchi, “Positron annihilation and ESR study of irradiation-induced defects in silica glass,” Nucl. Instrum. Methods Phys. Res. B 116(1-4), 347–354 (1996).
    [CrossRef]
  9. J. C. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys. 37(4), 836–841 (1962).
    [CrossRef]
  10. G. Gliemeroth, “Optical properties of optical glass,” J. Non-Cryst. Solids 47(1), 57–68 (1982).
    [CrossRef]
  11. E. J. Friebele, M. E. Gingerich, and G. H. Sigel, “Effect of ionizing radiation on the optical attenuation in doped silica and plastic fiber-optic waveguides,” Appl. Phys. Lett. 32(10), 619–621 (1978).
    [CrossRef]
  12. J. Acocella, M. Takata, M. Tomozawa, E. B. Watson, and J. T. Warden, “Effect of y radiation on high-water-content glasses,” J. Am. Ceram. Soc. 65(9), 407–410 (1982).
    [CrossRef]
  13. S. P. Faile and D. M. Roy, “Mechanism of color center destruction in hydrogen impregnated radiation resistant glasses,” Mater. Res. Bull. 5(6), 385–389 (1970).
    [CrossRef]
  14. E. J. Friebele, “Radiation Effects” in Optical Properties of Glass, Edited by D.R. Uhlmann and N.J. Kreidl. The American Ceramic Society, Westerville, OH, USA, 205–262 (1991)

2007 (2)

A. Gusarov, D. Doyle, L. Glebov, and F. Berghmans, “Radiation-induced transmission degradation of borosilicate crown optical glass from four different manufacturers,” Opt. Eng. 46(4), 043004 (2007).
[CrossRef]

S. M. A. Khtar, M. Ashraf, and S. H. Khan, “A study of neutron and gamma radiation effect s on t ransmission of various types of glasses, optical coatings, cemented optics and fiber,” J. Opt. Mater. 29, 1591–1603 (2007).

1996 (1)

M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada, and S. Yamaguchi, “Positron annihilation and ESR study of irradiation-induced defects in silica glass,” Nucl. Instrum. Methods Phys. Res. B 116(1-4), 347–354 (1996).
[CrossRef]

1994 (1)

D. L. Griscom, M. E. Gingerich, E. J. Friebele, M. Putnam, and W. Unruh, “Fast-neutron radiation effects in a silica-core optical fiber studied by a CCD-camera spectrometer,” Appl. Opt. 33(6), 1022–1028 (1994).
[PubMed]

1992 (1)

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1-4), 384–386 (1992).
[CrossRef]

1985 (1)

E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2eV in irradiated and drawn synthetic silica,” J. Non-Cryst. Solids 71(1-3), 133–144 (1985).
[CrossRef]

1982 (2)

G. Gliemeroth, “Optical properties of optical glass,” J. Non-Cryst. Solids 47(1), 57–68 (1982).
[CrossRef]

J. Acocella, M. Takata, M. Tomozawa, E. B. Watson, and J. T. Warden, “Effect of y radiation on high-water-content glasses,” J. Am. Ceram. Soc. 65(9), 407–410 (1982).
[CrossRef]

1979 (1)

S. F. Pellicori, E. E. Russell, and L. A. Watts, “Radiation induced transmission loss in optical materials,” Appl. Opt. 18(15), 2618–2621 (1979).
[CrossRef] [PubMed]

1978 (1)

E. J. Friebele, M. E. Gingerich, and G. H. Sigel, “Effect of ionizing radiation on the optical attenuation in doped silica and plastic fiber-optic waveguides,” Appl. Phys. Lett. 32(10), 619–621 (1978).
[CrossRef]

1970 (1)

S. P. Faile and D. M. Roy, “Mechanism of color center destruction in hydrogen impregnated radiation resistant glasses,” Mater. Res. Bull. 5(6), 385–389 (1970).
[CrossRef]

1962 (1)

J. C. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys. 37(4), 836–841 (1962).
[CrossRef]

Acocella, J.

J. Acocella, M. Takata, M. Tomozawa, E. B. Watson, and J. T. Warden, “Effect of y radiation on high-water-content glasses,” J. Am. Ceram. Soc. 65(9), 407–410 (1982).
[CrossRef]

Ashraf, M.

S. M. A. Khtar, M. Ashraf, and S. H. Khan, “A study of neutron and gamma radiation effect s on t ransmission of various types of glasses, optical coatings, cemented optics and fiber,” J. Opt. Mater. 29, 1591–1603 (2007).

Berghmans, F.

A. Gusarov, D. Doyle, L. Glebov, and F. Berghmans, “Radiation-induced transmission degradation of borosilicate crown optical glass from four different manufacturers,” Opt. Eng. 46(4), 043004 (2007).
[CrossRef]

Doyle, D.

A. Gusarov, D. Doyle, L. Glebov, and F. Berghmans, “Radiation-induced transmission degradation of borosilicate crown optical glass from four different manufacturers,” Opt. Eng. 46(4), 043004 (2007).
[CrossRef]

Faile, S. P.

S. P. Faile and D. M. Roy, “Mechanism of color center destruction in hydrogen impregnated radiation resistant glasses,” Mater. Res. Bull. 5(6), 385–389 (1970).
[CrossRef]

Friebele, E. J.

D. L. Griscom, M. E. Gingerich, E. J. Friebele, M. Putnam, and W. Unruh, “Fast-neutron radiation effects in a silica-core optical fiber studied by a CCD-camera spectrometer,” Appl. Opt. 33(6), 1022–1028 (1994).
[PubMed]

E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2eV in irradiated and drawn synthetic silica,” J. Non-Cryst. Solids 71(1-3), 133–144 (1985).
[CrossRef]

E. J. Friebele, M. E. Gingerich, and G. H. Sigel, “Effect of ionizing radiation on the optical attenuation in doped silica and plastic fiber-optic waveguides,” Appl. Phys. Lett. 32(10), 619–621 (1978).
[CrossRef]

Frischat, G. H.

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1-4), 384–386 (1992).
[CrossRef]

Fujinami, M.

M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada, and S. Yamaguchi, “Positron annihilation and ESR study of irradiation-induced defects in silica glass,” Nucl. Instrum. Methods Phys. Res. B 116(1-4), 347–354 (1996).
[CrossRef]

Gingerich, M. E.

D. L. Griscom, M. E. Gingerich, E. J. Friebele, M. Putnam, and W. Unruh, “Fast-neutron radiation effects in a silica-core optical fiber studied by a CCD-camera spectrometer,” Appl. Opt. 33(6), 1022–1028 (1994).
[PubMed]

E. J. Friebele, M. E. Gingerich, and G. H. Sigel, “Effect of ionizing radiation on the optical attenuation in doped silica and plastic fiber-optic waveguides,” Appl. Phys. Lett. 32(10), 619–621 (1978).
[CrossRef]

Glebov, L.

A. Gusarov, D. Doyle, L. Glebov, and F. Berghmans, “Radiation-induced transmission degradation of borosilicate crown optical glass from four different manufacturers,” Opt. Eng. 46(4), 043004 (2007).
[CrossRef]

Gliemeroth, G.

G. Gliemeroth, “Optical properties of optical glass,” J. Non-Cryst. Solids 47(1), 57–68 (1982).
[CrossRef]

Griscom, D. L.

D. L. Griscom, M. E. Gingerich, E. J. Friebele, M. Putnam, and W. Unruh, “Fast-neutron radiation effects in a silica-core optical fiber studied by a CCD-camera spectrometer,” Appl. Opt. 33(6), 1022–1028 (1994).
[PubMed]

E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2eV in irradiated and drawn synthetic silica,” J. Non-Cryst. Solids 71(1-3), 133–144 (1985).
[CrossRef]

Gusarov, A.

A. Gusarov, D. Doyle, L. Glebov, and F. Berghmans, “Radiation-induced transmission degradation of borosilicate crown optical glass from four different manufacturers,” Opt. Eng. 46(4), 043004 (2007).
[CrossRef]

Hasegawa, M.

M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada, and S. Yamaguchi, “Positron annihilation and ESR study of irradiation-induced defects in silica glass,” Nucl. Instrum. Methods Phys. Res. B 116(1-4), 347–354 (1996).
[CrossRef]

Hayden, J. S.

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1-4), 384–386 (1992).
[CrossRef]

Ito, Y.

M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada, and S. Yamaguchi, “Positron annihilation and ESR study of irradiation-induced defects in silica glass,” Nucl. Instrum. Methods Phys. Res. B 116(1-4), 347–354 (1996).
[CrossRef]

Khan, S. H.

S. M. A. Khtar, M. Ashraf, and S. H. Khan, “A study of neutron and gamma radiation effect s on t ransmission of various types of glasses, optical coatings, cemented optics and fiber,” J. Opt. Mater. 29, 1591–1603 (2007).

Khtar, S. M. A.

S. M. A. Khtar, M. Ashraf, and S. H. Khan, “A study of neutron and gamma radiation effect s on t ransmission of various types of glasses, optical coatings, cemented optics and fiber,” J. Opt. Mater. 29, 1591–1603 (2007).

Marker, A. J.

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1-4), 384–386 (1992).
[CrossRef]

Marrone, M. J.

E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2eV in irradiated and drawn synthetic silica,” J. Non-Cryst. Solids 71(1-3), 133–144 (1985).
[CrossRef]

Okada, S.

M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada, and S. Yamaguchi, “Positron annihilation and ESR study of irradiation-induced defects in silica glass,” Nucl. Instrum. Methods Phys. Res. B 116(1-4), 347–354 (1996).
[CrossRef]

Pellicori, S. F.

S. F. Pellicori, E. E. Russell, and L. A. Watts, “Radiation induced transmission loss in optical materials,” Appl. Opt. 18(15), 2618–2621 (1979).
[CrossRef] [PubMed]

Putnam, M.

D. L. Griscom, M. E. Gingerich, E. J. Friebele, M. Putnam, and W. Unruh, “Fast-neutron radiation effects in a silica-core optical fiber studied by a CCD-camera spectrometer,” Appl. Opt. 33(6), 1022–1028 (1994).
[PubMed]

Rädlein, E.

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1-4), 384–386 (1992).
[CrossRef]

Roy, D. M.

S. P. Faile and D. M. Roy, “Mechanism of color center destruction in hydrogen impregnated radiation resistant glasses,” Mater. Res. Bull. 5(6), 385–389 (1970).
[CrossRef]

Russell, E. E.

S. F. Pellicori, E. E. Russell, and L. A. Watts, “Radiation induced transmission loss in optical materials,” Appl. Opt. 18(15), 2618–2621 (1979).
[CrossRef] [PubMed]

Sigel, G. H.

E. J. Friebele, M. E. Gingerich, and G. H. Sigel, “Effect of ionizing radiation on the optical attenuation in doped silica and plastic fiber-optic waveguides,” Appl. Phys. Lett. 32(10), 619–621 (1978).
[CrossRef]

Speit, B.

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1-4), 384–386 (1992).
[CrossRef]

Stroud, J. C.

J. C. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys. 37(4), 836–841 (1962).
[CrossRef]

Sunaga, H.

M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada, and S. Yamaguchi, “Positron annihilation and ESR study of irradiation-induced defects in silica glass,” Nucl. Instrum. Methods Phys. Res. B 116(1-4), 347–354 (1996).
[CrossRef]

Tabata, M.

M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada, and S. Yamaguchi, “Positron annihilation and ESR study of irradiation-induced defects in silica glass,” Nucl. Instrum. Methods Phys. Res. B 116(1-4), 347–354 (1996).
[CrossRef]

Takata, M.

J. Acocella, M. Takata, M. Tomozawa, E. B. Watson, and J. T. Warden, “Effect of y radiation on high-water-content glasses,” J. Am. Ceram. Soc. 65(9), 407–410 (1982).
[CrossRef]

Tomozawa, M.

J. Acocella, M. Takata, M. Tomozawa, E. B. Watson, and J. T. Warden, “Effect of y radiation on high-water-content glasses,” J. Am. Ceram. Soc. 65(9), 407–410 (1982).
[CrossRef]

Unruh, W.

D. L. Griscom, M. E. Gingerich, E. J. Friebele, M. Putnam, and W. Unruh, “Fast-neutron radiation effects in a silica-core optical fiber studied by a CCD-camera spectrometer,” Appl. Opt. 33(6), 1022–1028 (1994).
[PubMed]

Warden, J. T.

J. Acocella, M. Takata, M. Tomozawa, E. B. Watson, and J. T. Warden, “Effect of y radiation on high-water-content glasses,” J. Am. Ceram. Soc. 65(9), 407–410 (1982).
[CrossRef]

Watson, E. B.

J. Acocella, M. Takata, M. Tomozawa, E. B. Watson, and J. T. Warden, “Effect of y radiation on high-water-content glasses,” J. Am. Ceram. Soc. 65(9), 407–410 (1982).
[CrossRef]

Watts, L. A.

S. F. Pellicori, E. E. Russell, and L. A. Watts, “Radiation induced transmission loss in optical materials,” Appl. Opt. 18(15), 2618–2621 (1979).
[CrossRef] [PubMed]

Yamaguchi, S.

M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada, and S. Yamaguchi, “Positron annihilation and ESR study of irradiation-induced defects in silica glass,” Nucl. Instrum. Methods Phys. Res. B 116(1-4), 347–354 (1996).
[CrossRef]

Appl. Opt. (2)

S. F. Pellicori, E. E. Russell, and L. A. Watts, “Radiation induced transmission loss in optical materials,” Appl. Opt. 18(15), 2618–2621 (1979).
[CrossRef] [PubMed]

D. L. Griscom, M. E. Gingerich, E. J. Friebele, M. Putnam, and W. Unruh, “Fast-neutron radiation effects in a silica-core optical fiber studied by a CCD-camera spectrometer,” Appl. Opt. 33(6), 1022–1028 (1994).
[PubMed]

Appl. Phys. Lett. (1)

E. J. Friebele, M. E. Gingerich, and G. H. Sigel, “Effect of ionizing radiation on the optical attenuation in doped silica and plastic fiber-optic waveguides,” Appl. Phys. Lett. 32(10), 619–621 (1978).
[CrossRef]

J. Am. Ceram. Soc. (1)

J. Acocella, M. Takata, M. Tomozawa, E. B. Watson, and J. T. Warden, “Effect of y radiation on high-water-content glasses,” J. Am. Ceram. Soc. 65(9), 407–410 (1982).
[CrossRef]

J. Chem. Phys. (1)

J. C. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys. 37(4), 836–841 (1962).
[CrossRef]

J. Non-Cryst. Solids (2)

G. Gliemeroth, “Optical properties of optical glass,” J. Non-Cryst. Solids 47(1), 57–68 (1982).
[CrossRef]

E. J. Friebele, D. L. Griscom, and M. J. Marrone, “The optical absorption and luminescence bands near 2eV in irradiated and drawn synthetic silica,” J. Non-Cryst. Solids 71(1-3), 133–144 (1985).
[CrossRef]

J. Opt. Mater. (1)

S. M. A. Khtar, M. Ashraf, and S. H. Khan, “A study of neutron and gamma radiation effect s on t ransmission of various types of glasses, optical coatings, cemented optics and fiber,” J. Opt. Mater. 29, 1591–1603 (2007).

Mater. Res. Bull. (1)

S. P. Faile and D. M. Roy, “Mechanism of color center destruction in hydrogen impregnated radiation resistant glasses,” Mater. Res. Bull. 5(6), 385–389 (1970).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (2)

B. Speit, E. Rädlein, G. H. Frischat, A. J. Marker, and J. S. Hayden, “Radiation resistant optical glasses,” Nucl. Instrum. Methods Phys. Res. B 65(1-4), 384–386 (1992).
[CrossRef]

M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada, and S. Yamaguchi, “Positron annihilation and ESR study of irradiation-induced defects in silica glass,” Nucl. Instrum. Methods Phys. Res. B 116(1-4), 347–354 (1996).
[CrossRef]

Opt. Eng. (1)

A. Gusarov, D. Doyle, L. Glebov, and F. Berghmans, “Radiation-induced transmission degradation of borosilicate crown optical glass from four different manufacturers,” Opt. Eng. 46(4), 043004 (2007).
[CrossRef]

Other (2)

http://www.schott.com/advanced_optics/english/download/schott_tie-42_radiation_resistant_glasses _august _2007_en.pdf .

E. J. Friebele, “Radiation Effects” in Optical Properties of Glass, Edited by D.R. Uhlmann and N.J. Kreidl. The American Ceramic Society, Westerville, OH, USA, 205–262 (1991)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Contrasting transmittance of G1 between no O2 and added O2 before and after radiation(a)Before radiation; (b)10krad radiation; (c)15krad radiation; (d)20krad radiation.

Fig. 2
Fig. 2

Contrasting transmittance of G2 between no O2 and added O2 before and after 250krad radiation.

Fig. 3
Fig. 3

Contrasting transmittance of G3 between no O2 and added O2 before and after 250krad radiation.

Metrics