Abstract

A continuous multiple exposure diffraction grating (CMEDG) is fabricated holographically on polymer dispersed liquid crystal (PDLC) films using two-beam interference with multiple exposures. The grating is fabricated by exposing a PDLC film to 18 repeated exposure/non-exposure cycles with an angular step of ~10°/10° while it revolves a circle on a rotation stage. The structure of the sample thus formed is analyzed using a scanning electron microscope (SEM) and shows arc-ripples around the center. From the diffraction patterns of the formed grating obtained using a normally incident laser beam, some or all of the 18 recorded arc beams can be reconstructed, as determined by the probing location. Thus, it can be applied for use as a beam-vibration sensor for a laser.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, and T. Baba, Roadmap on photonic crystals (Kluwer Academic, 2003).
  2. X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference technique by three equal-intensity umbrellalike beams with a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Commun. 218(4-6), 325–332 (2003).
    [CrossRef]
  3. X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Lett. 28(6), 453–455 (2003).
    [CrossRef] [PubMed]
  4. L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A 19(11), 2238–2244 (2002).
    [CrossRef]
  5. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
    [CrossRef]
  6. S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries,” J. Opt. Soc. Am. B 23(1), 149–158 (2006).
    [CrossRef]
  7. N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, “Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique,” Opt. Express 14(22), 10746–10752 (2006).
    [CrossRef] [PubMed]
  8. Y. Liu, S. Liu, and X. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45(3), 480–483 (2006).
    [CrossRef] [PubMed]
  9. M. S. Li, S. T. Wu, and A. Y.-G. Andy, “Fuh, “Superprism phenomenon based on holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 88(9), 091109 (2006).
    [CrossRef]
  10. M.-S. Li, S.-Y. Huang, S.-T. Wu, H.-C. Lin, and A. Y.-G. Fuh, “Optical and electro-optical properties of photonic crystals based on polymer-dispersed liquid crystals,” Appl. Phys. B 101(1-2), 245–252 (2010).
    [CrossRef]
  11. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18(11), 915–917 (1993).
    [CrossRef] [PubMed]
  12. H. Gao, H. Pu, B. Gao, D. Yin, J. Liu, and F. Gan, “Electrically switchable multiple volume hologram recording in polymer-dispersed liquid-crystal films,” Appl. Phys. Lett. 95(20), 201105 (2009).
    [CrossRef]
  13. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 17(20), 1471–1473 (1992).
    [CrossRef] [PubMed]
  14. S. Campbell and P. Yen, “Partial rotation-invariant pattern matching and face recognition with a joint transform correlator,” Appl. Opt. 35, 2380–2387 (1996).
    [CrossRef] [PubMed]
  15. P. Hariharan, Optical holography (University Press & Cambridge, 1984).
  16. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21(12), 896–898 (1996).
    [CrossRef] [PubMed]
  17. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley & New York, 1993).
  18. M. A. Ellabban, M. Fally, H. Ursic, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87(15), 151101 (2005).
    [CrossRef]

2010 (1)

M.-S. Li, S.-Y. Huang, S.-T. Wu, H.-C. Lin, and A. Y.-G. Fuh, “Optical and electro-optical properties of photonic crystals based on polymer-dispersed liquid crystals,” Appl. Phys. B 101(1-2), 245–252 (2010).
[CrossRef]

2009 (1)

H. Gao, H. Pu, B. Gao, D. Yin, J. Liu, and F. Gan, “Electrically switchable multiple volume hologram recording in polymer-dispersed liquid-crystal films,” Appl. Phys. Lett. 95(20), 201105 (2009).
[CrossRef]

2006 (4)

S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries,” J. Opt. Soc. Am. B 23(1), 149–158 (2006).
[CrossRef]

N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, “Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique,” Opt. Express 14(22), 10746–10752 (2006).
[CrossRef] [PubMed]

Y. Liu, S. Liu, and X. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45(3), 480–483 (2006).
[CrossRef] [PubMed]

M. S. Li, S. T. Wu, and A. Y.-G. Andy, “Fuh, “Superprism phenomenon based on holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 88(9), 091109 (2006).
[CrossRef]

2005 (1)

M. A. Ellabban, M. Fally, H. Ursic, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87(15), 151101 (2005).
[CrossRef]

2003 (2)

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference technique by three equal-intensity umbrellalike beams with a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Commun. 218(4-6), 325–332 (2003).
[CrossRef]

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Lett. 28(6), 453–455 (2003).
[CrossRef] [PubMed]

2002 (2)

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A 19(11), 2238–2244 (2002).
[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
[CrossRef]

1996 (2)

S. Campbell and P. Yen, “Partial rotation-invariant pattern matching and face recognition with a joint transform correlator,” Appl. Opt. 35, 2380–2387 (1996).
[CrossRef] [PubMed]

F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21(12), 896–898 (1996).
[CrossRef] [PubMed]

1993 (1)

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18(11), 915–917 (1993).
[CrossRef] [PubMed]

1992 (1)

G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 17(20), 1471–1473 (1992).
[CrossRef] [PubMed]

Andy, A. Y.-G.

M. S. Li, S. T. Wu, and A. Y.-G. Andy, “Fuh, “Superprism phenomenon based on holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 88(9), 091109 (2006).
[CrossRef]

Burr, G. W.

F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21(12), 896–898 (1996).
[CrossRef] [PubMed]

Cai, L. Z.

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference technique by three equal-intensity umbrellalike beams with a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Commun. 218(4-6), 325–332 (2003).
[CrossRef]

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Lett. 28(6), 453–455 (2003).
[CrossRef] [PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A 19(11), 2238–2244 (2002).
[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
[CrossRef]

Campbell, S.

S. Campbell and P. Yen, “Partial rotation-invariant pattern matching and face recognition with a joint transform correlator,” Appl. Opt. 35, 2380–2387 (1996).
[CrossRef] [PubMed]

Crawford, G. P.

S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries,” J. Opt. Soc. Am. B 23(1), 149–158 (2006).
[CrossRef]

Drevenšek-Olenik, I.

M. A. Ellabban, M. Fally, H. Ursic, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87(15), 151101 (2005).
[CrossRef]

Ellabban, M. A.

M. A. Ellabban, M. Fally, H. Ursic, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87(15), 151101 (2005).
[CrossRef]

Fally, M.

M. A. Ellabban, M. Fally, H. Ursic, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87(15), 151101 (2005).
[CrossRef]

Fuh, A. Y.-G.

M.-S. Li, S.-Y. Huang, S.-T. Wu, H.-C. Lin, and A. Y.-G. Fuh, “Optical and electro-optical properties of photonic crystals based on polymer-dispersed liquid crystals,” Appl. Phys. B 101(1-2), 245–252 (2010).
[CrossRef]

Gan, F.

H. Gao, H. Pu, B. Gao, D. Yin, J. Liu, and F. Gan, “Electrically switchable multiple volume hologram recording in polymer-dispersed liquid-crystal films,” Appl. Phys. Lett. 95(20), 201105 (2009).
[CrossRef]

Gao, B.

H. Gao, H. Pu, B. Gao, D. Yin, J. Liu, and F. Gan, “Electrically switchable multiple volume hologram recording in polymer-dispersed liquid-crystal films,” Appl. Phys. Lett. 95(20), 201105 (2009).
[CrossRef]

Gao, H.

H. Gao, H. Pu, B. Gao, D. Yin, J. Liu, and F. Gan, “Electrically switchable multiple volume hologram recording in polymer-dispersed liquid-crystal films,” Appl. Phys. Lett. 95(20), 201105 (2009).
[CrossRef]

Gorkhali, S. P.

S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries,” J. Opt. Soc. Am. B 23(1), 149–158 (2006).
[CrossRef]

Hsu, C. C.

N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, “Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique,” Opt. Express 14(22), 10746–10752 (2006).
[CrossRef] [PubMed]

Huang, S.-Y.

M.-S. Li, S.-Y. Huang, S.-T. Wu, H.-C. Lin, and A. Y.-G. Fuh, “Optical and electro-optical properties of photonic crystals based on polymer-dispersed liquid crystals,” Appl. Phys. B 101(1-2), 245–252 (2010).
[CrossRef]

Huang, Y. Y.

N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, “Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique,” Opt. Express 14(22), 10746–10752 (2006).
[CrossRef] [PubMed]

Lai, N. D.

N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, “Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique,” Opt. Express 14(22), 10746–10752 (2006).
[CrossRef] [PubMed]

Leyva, V.

G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 17(20), 1471–1473 (1992).
[CrossRef] [PubMed]

Li, M. S.

M. S. Li, S. T. Wu, and A. Y.-G. Andy, “Fuh, “Superprism phenomenon based on holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 88(9), 091109 (2006).
[CrossRef]

Li, M.-S.

M.-S. Li, S.-Y. Huang, S.-T. Wu, H.-C. Lin, and A. Y.-G. Fuh, “Optical and electro-optical properties of photonic crystals based on polymer-dispersed liquid crystals,” Appl. Phys. B 101(1-2), 245–252 (2010).
[CrossRef]

Lin, H.-C.

M.-S. Li, S.-Y. Huang, S.-T. Wu, H.-C. Lin, and A. Y.-G. Fuh, “Optical and electro-optical properties of photonic crystals based on polymer-dispersed liquid crystals,” Appl. Phys. B 101(1-2), 245–252 (2010).
[CrossRef]

Lin, J. H.

N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, “Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique,” Opt. Express 14(22), 10746–10752 (2006).
[CrossRef] [PubMed]

Liu, J.

H. Gao, H. Pu, B. Gao, D. Yin, J. Liu, and F. Gan, “Electrically switchable multiple volume hologram recording in polymer-dispersed liquid-crystal films,” Appl. Phys. Lett. 95(20), 201105 (2009).
[CrossRef]

Liu, Q.

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Lett. 28(6), 453–455 (2003).
[CrossRef] [PubMed]

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference technique by three equal-intensity umbrellalike beams with a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Commun. 218(4-6), 325–332 (2003).
[CrossRef]

Liu, S.

Y. Liu, S. Liu, and X. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45(3), 480–483 (2006).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, S. Liu, and X. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45(3), 480–483 (2006).
[CrossRef] [PubMed]

Mok, F. H.

F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21(12), 896–898 (1996).
[CrossRef] [PubMed]

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18(11), 915–917 (1993).
[CrossRef] [PubMed]

Psaltis, D.

F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21(12), 896–898 (1996).
[CrossRef] [PubMed]

Pu, H.

H. Gao, H. Pu, B. Gao, D. Yin, J. Liu, and F. Gan, “Electrically switchable multiple volume hologram recording in polymer-dispersed liquid-crystal films,” Appl. Phys. Lett. 95(20), 201105 (2009).
[CrossRef]

Qi, J.

S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries,” J. Opt. Soc. Am. B 23(1), 149–158 (2006).
[CrossRef]

Rakuljic, G. A.

G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 17(20), 1471–1473 (1992).
[CrossRef] [PubMed]

Ursic, H.

M. A. Ellabban, M. Fally, H. Ursic, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87(15), 151101 (2005).
[CrossRef]

Wang, Y. R.

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference technique by three equal-intensity umbrellalike beams with a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Commun. 218(4-6), 325–332 (2003).
[CrossRef]

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Lett. 28(6), 453–455 (2003).
[CrossRef] [PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A 19(11), 2238–2244 (2002).
[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
[CrossRef]

Wu, S. T.

M. S. Li, S. T. Wu, and A. Y.-G. Andy, “Fuh, “Superprism phenomenon based on holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 88(9), 091109 (2006).
[CrossRef]

Wu, S.-T.

M.-S. Li, S.-Y. Huang, S.-T. Wu, H.-C. Lin, and A. Y.-G. Fuh, “Optical and electro-optical properties of photonic crystals based on polymer-dispersed liquid crystals,” Appl. Phys. B 101(1-2), 245–252 (2010).
[CrossRef]

Yang, X. L.

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference technique by three equal-intensity umbrellalike beams with a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Commun. 218(4-6), 325–332 (2003).
[CrossRef]

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Lett. 28(6), 453–455 (2003).
[CrossRef] [PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A 19(11), 2238–2244 (2002).
[CrossRef]

Yariv, A.

G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 17(20), 1471–1473 (1992).
[CrossRef] [PubMed]

Yen, P.

S. Campbell and P. Yen, “Partial rotation-invariant pattern matching and face recognition with a joint transform correlator,” Appl. Opt. 35, 2380–2387 (1996).
[CrossRef] [PubMed]

Yin, D.

H. Gao, H. Pu, B. Gao, D. Yin, J. Liu, and F. Gan, “Electrically switchable multiple volume hologram recording in polymer-dispersed liquid-crystal films,” Appl. Phys. Lett. 95(20), 201105 (2009).
[CrossRef]

Zhang, X.

Y. Liu, S. Liu, and X. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45(3), 480–483 (2006).
[CrossRef] [PubMed]

Appl. Opt. (2)

Y. Liu, S. Liu, and X. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45(3), 480–483 (2006).
[CrossRef] [PubMed]

S. Campbell and P. Yen, “Partial rotation-invariant pattern matching and face recognition with a joint transform correlator,” Appl. Opt. 35, 2380–2387 (1996).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M.-S. Li, S.-Y. Huang, S.-T. Wu, H.-C. Lin, and A. Y.-G. Fuh, “Optical and electro-optical properties of photonic crystals based on polymer-dispersed liquid crystals,” Appl. Phys. B 101(1-2), 245–252 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

H. Gao, H. Pu, B. Gao, D. Yin, J. Liu, and F. Gan, “Electrically switchable multiple volume hologram recording in polymer-dispersed liquid-crystal films,” Appl. Phys. Lett. 95(20), 201105 (2009).
[CrossRef]

M. S. Li, S. T. Wu, and A. Y.-G. Andy, “Fuh, “Superprism phenomenon based on holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 88(9), 091109 (2006).
[CrossRef]

M. A. Ellabban, M. Fally, H. Ursic, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87(15), 151101 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,” J. Opt. Soc. Am. A 19(11), 2238–2244 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries,” J. Opt. Soc. Am. B 23(1), 149–158 (2006).
[CrossRef]

Opt. Commun. (1)

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference technique by three equal-intensity umbrellalike beams with a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Commun. 218(4-6), 325–332 (2003).
[CrossRef]

Opt. Express (1)

N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, “Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique,” Opt. Express 14(22), 10746–10752 (2006).
[CrossRef] [PubMed]

Opt. Lett. (5)

X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, “Interference of umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices,” Opt. Lett. 28(6), 453–455 (2003).
[CrossRef] [PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
[CrossRef]

G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 17(20), 1471–1473 (1992).
[CrossRef] [PubMed]

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18(11), 915–917 (1993).
[CrossRef] [PubMed]

F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21(12), 896–898 (1996).
[CrossRef] [PubMed]

Other (3)

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley & New York, 1993).

P. Hariharan, Optical holography (University Press & Cambridge, 1984).

S. Noda, and T. Baba, Roadmap on photonic crystals (Kluwer Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for holographic recording based on two-beam interference with multiple exposures. The intersection angle (θ) between the two beams is ~39°. M and B.S. represent mirror and beam splitter, respectively.

Fig. 2
Fig. 2

Simulated patterns of two-beam interference with (a) PQC and (b) CMEDG (top view). The gray bars indicate intensity of interference; (c) and (d) are the patterns corresponding to regions (c) and (d) in Fig. 2(b).

Fig. 4
Fig. 4

(a) The illustration of the normally incident probing beam positions (P(0)- P(3)) on the sample; (b), (c), (d) and (e) are the diffraction images of P(0), P(1), P(2), and P(3) from PQC, respectively; (f), (g), (h) and (i) show the diffraction images probed at positions P(0), P(1), P(2), and P(3) on a CMEDG sample, respectively; (j) shows the diffraction image with the probe beam being incident at a distance of 100 μm under the center.

Fig. 3
Fig. 3

Top-view SEM image of polymer structure in region (c) of Fig. 2(b). Scale bar represents 5 μm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , z ) = n ϕ [ g 0 + 2 r o cos ( k y sin θ + k z ( cos θ 1 ) ) ] ​   d ϕ ,
g 0 ~ | r ( x , y ) | 2 + | o ( x , y , z ) | 2
η ~ sin 2 ( π d Δ n λ )
Δ n C M = 1 M n Δ n M n d M n = Δ n ln M n M n σ

Metrics