Abstract

In this study, we adopt a model-based correction method to reduce the finite aperture effect in photoacoustic tomography (PAT) – the tangential resolution deteriorates as the imaging point moves away from the circular scanning center. Such degradation in resolution originates from the spatial impulse responses (SIRs) of the used finite-sized unfocused transducer. Based on a linear, discrete PAT imaging model, the proposed method employs a spatiotemporal optimal filter designed in minimum mean square error sense to compensate the SIRs associated with an unfocused transducer at every imaging point; thus retrospective restoration of the tangential resolution can be achieved. Simulation and experimental results demonstrate that this method can substantially improve the degraded tangential resolution for PAT with finite-sized unfocused transducers while retaining the radial resolution.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
    [CrossRef] [PubMed]
  2. L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14(1), 171–179 (2008).
    [CrossRef]
  3. M.-L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
    [CrossRef] [PubMed]
  4. J. T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of melanoma skin cancer in-vivo by dual wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
    [CrossRef]
  5. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
    [CrossRef] [PubMed]
  6. M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
    [CrossRef]
  7. G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).
  8. F. Lingvall, “Time domain reconstruction methods for ultrasonic array imaging,” Ph.D. dissertation, Signals and Systems, Uppsala University, Uppsala, Sweden (2004).
  9. M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056605 (2003).
    [CrossRef] [PubMed]
  10. M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009).
    [CrossRef] [PubMed]
  11. M.-L. Li and L. V. Wang, “A study of reconstruction in photoacoustic tomography with a focused transducer,” Proc. SPIE 6437, 64371E (2007).
    [CrossRef]
  12. P. R. Stepanishen, “Transient radiation from pistons in an infinite planar baffle,” J. Acoust. Soc. Am. 49(5B), 1629–1638 (1971).
    [CrossRef]
  13. B. Piwakowski and B. Delannoy, “Method for computing spatial pulse response: Time-domain approach,” J. Acoust. Soc. Am. 86(6), 2422–2432 (1989).
    [CrossRef]
  14. F. Lingvall, T. Olofsson, and T. Stepinski, “Synthetic aperture imaging using sources with finite aperture: deconvolution of the spatial impulse response,” J. Acoust. Soc. Am. 114(1), 225–234 (2003).
    [CrossRef] [PubMed]
  15. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010).
    [CrossRef] [PubMed]
  16. M. Roumeliotis, P. Ephrat, J. Patrick, and J. J. L. Carson, “Development and characterization of an omnidirectional photoacoustic point source for calibration of a staring 3D photoacoustic imaging system,” Opt. Express 17(17), 15228–15238 (2009).
    [CrossRef] [PubMed]
  17. M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010).
    [CrossRef] [PubMed]

2010 (2)

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010).
[CrossRef] [PubMed]

M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010).
[CrossRef] [PubMed]

2009 (4)

M. Roumeliotis, P. Ephrat, J. Patrick, and J. J. L. Carson, “Development and characterization of an omnidirectional photoacoustic point source for calibration of a staring 3D photoacoustic imaging system,” Opt. Express 17(17), 15228–15238 (2009).
[CrossRef] [PubMed]

M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009).
[CrossRef] [PubMed]

M.-L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

2008 (2)

M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[CrossRef]

L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14(1), 171–179 (2008).
[CrossRef]

2007 (2)

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

M.-L. Li and L. V. Wang, “A study of reconstruction in photoacoustic tomography with a focused transducer,” Proc. SPIE 6437, 64371E (2007).
[CrossRef]

2006 (1)

J. T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of melanoma skin cancer in-vivo by dual wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[CrossRef]

2003 (3)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056605 (2003).
[CrossRef] [PubMed]

F. Lingvall, T. Olofsson, and T. Stepinski, “Synthetic aperture imaging using sources with finite aperture: deconvolution of the spatial impulse response,” J. Acoust. Soc. Am. 114(1), 225–234 (2003).
[CrossRef] [PubMed]

1989 (1)

B. Piwakowski and B. Delannoy, “Method for computing spatial pulse response: Time-domain approach,” J. Acoust. Soc. Am. 86(6), 2422–2432 (1989).
[CrossRef]

1971 (1)

P. R. Stepanishen, “Transient radiation from pistons in an infinite planar baffle,” J. Acoust. Soc. Am. 49(5B), 1629–1638 (1971).
[CrossRef]

Al-Aabed, H.

M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010).
[CrossRef] [PubMed]

Anastasio, M. A.

M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010).
[CrossRef] [PubMed]

Carson, J. J. L.

M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010).
[CrossRef] [PubMed]

M. Roumeliotis, P. Ephrat, J. Patrick, and J. J. L. Carson, “Development and characterization of an omnidirectional photoacoustic point source for calibration of a staring 3D photoacoustic imaging system,” Opt. Express 17(17), 15228–15238 (2009).
[CrossRef] [PubMed]

Chaudhary, G.

M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010).
[CrossRef] [PubMed]

Conjusteau, A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Delannoy, B.

B. Piwakowski and B. Delannoy, “Method for computing spatial pulse response: Time-domain approach,” J. Acoust. Soc. Am. 86(6), 2422–2432 (1989).
[CrossRef]

Ephrat, P.

M. Roumeliotis, P. Ephrat, J. Patrick, and J. J. L. Carson, “Development and characterization of an omnidirectional photoacoustic point source for calibration of a staring 3D photoacoustic imaging system,” Opt. Express 17(17), 15228–15238 (2009).
[CrossRef] [PubMed]

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Gill-Sharp, K. L.

M.-L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

Immucci, A.

M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010).
[CrossRef] [PubMed]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Ku, G.

M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009).
[CrossRef] [PubMed]

M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Li, C.

M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[CrossRef]

Li, M.-L.

M.-L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[CrossRef]

M.-L. Li and L. V. Wang, “A study of reconstruction in photoacoustic tomography with a focused transducer,” Proc. SPIE 6437, 64371E (2007).
[CrossRef]

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

J. T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of melanoma skin cancer in-vivo by dual wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[CrossRef]

Lingvall, F.

F. Lingvall, T. Olofsson, and T. Stepinski, “Synthetic aperture imaging using sources with finite aperture: deconvolution of the spatial impulse response,” J. Acoust. Soc. Am. 114(1), 225–234 (2003).
[CrossRef] [PubMed]

Lungu, G.

M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[CrossRef]

Lungu, G. F.

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

Maslov, K.

J. T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of melanoma skin cancer in-vivo by dual wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[CrossRef]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Ng, E.

M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010).
[CrossRef] [PubMed]

Ntziachristos, V.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010).
[CrossRef] [PubMed]

Oh, J. T.

J. T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of melanoma skin cancer in-vivo by dual wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[CrossRef]

Oh, J.-T.

M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[CrossRef]

Olofsson, T.

F. Lingvall, T. Olofsson, and T. Stepinski, “Synthetic aperture imaging using sources with finite aperture: deconvolution of the spatial impulse response,” J. Acoust. Soc. Am. 114(1), 225–234 (2003).
[CrossRef] [PubMed]

Oraevsky, A. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Patrick, J.

M. Roumeliotis, P. Ephrat, J. Patrick, and J. J. L. Carson, “Development and characterization of an omnidirectional photoacoustic point source for calibration of a staring 3D photoacoustic imaging system,” Opt. Express 17(17), 15228–15238 (2009).
[CrossRef] [PubMed]

Piwakowski, B.

B. Piwakowski and B. Delannoy, “Method for computing spatial pulse response: Time-domain approach,” J. Acoust. Soc. Am. 86(6), 2422–2432 (1989).
[CrossRef]

Pramanik, M.

M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009).
[CrossRef] [PubMed]

Razansky, D.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010).
[CrossRef] [PubMed]

Rosenthal, A.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010).
[CrossRef] [PubMed]

Roumeliotis, M.

M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010).
[CrossRef] [PubMed]

M. Roumeliotis, P. Ephrat, J. Patrick, and J. J. L. Carson, “Development and characterization of an omnidirectional photoacoustic point source for calibration of a staring 3D photoacoustic imaging system,” Opt. Express 17(17), 15228–15238 (2009).
[CrossRef] [PubMed]

Schwartz, J. A.

M.-L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

Stepanishen, P. R.

P. R. Stepanishen, “Transient radiation from pistons in an infinite planar baffle,” J. Acoust. Soc. Am. 49(5B), 1629–1638 (1971).
[CrossRef]

Stepinski, T.

F. Lingvall, T. Olofsson, and T. Stepinski, “Synthetic aperture imaging using sources with finite aperture: deconvolution of the spatial impulse response,” J. Acoust. Soc. Am. 114(1), 225–234 (2003).
[CrossRef] [PubMed]

Stodilka, R. Z.

M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010).
[CrossRef] [PubMed]

Stoica, G.

M.-L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[CrossRef]

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

J. T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of melanoma skin cancer in-vivo by dual wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wang, J. C.

M.-L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

Wang, L. V.

M.-L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009).
[CrossRef] [PubMed]

M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[CrossRef]

L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14(1), 171–179 (2008).
[CrossRef]

M.-L. Li and L. V. Wang, “A study of reconstruction in photoacoustic tomography with a focused transducer,” Proc. SPIE 6437, 64371E (2007).
[CrossRef]

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

J. T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of melanoma skin cancer in-vivo by dual wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056605 (2003).
[CrossRef] [PubMed]

Wang, W.

M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[CrossRef]

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Xie, X.

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Xie, X. Y.

M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[CrossRef]

Xu, M.

M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056605 (2003).
[CrossRef] [PubMed]

Zhang, H. F.

J. T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of melanoma skin cancer in-vivo by dual wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14(1), 171–179 (2008).
[CrossRef]

IEEE Trans. Med. Imaging (1)

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010).
[CrossRef] [PubMed]

Int. J. Oncol. (1)

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).

J. Acoust. Soc. Am. (3)

P. R. Stepanishen, “Transient radiation from pistons in an infinite planar baffle,” J. Acoust. Soc. Am. 49(5B), 1629–1638 (1971).
[CrossRef]

B. Piwakowski and B. Delannoy, “Method for computing spatial pulse response: Time-domain approach,” J. Acoust. Soc. Am. 86(6), 2422–2432 (1989).
[CrossRef]

F. Lingvall, T. Olofsson, and T. Stepinski, “Synthetic aperture imaging using sources with finite aperture: deconvolution of the spatial impulse response,” J. Acoust. Soc. Am. 114(1), 225–234 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009).
[CrossRef] [PubMed]

M.-L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[CrossRef] [PubMed]

J. T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of melanoma skin cancer in-vivo by dual wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

M. Roumeliotis, P. Ephrat, J. Patrick, and J. J. L. Carson, “Development and characterization of an omnidirectional photoacoustic point source for calibration of a staring 3D photoacoustic imaging system,” Opt. Express 17(17), 15228–15238 (2009).
[CrossRef] [PubMed]

M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056605 (2003).
[CrossRef] [PubMed]

Proc. IEEE (1)

M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[CrossRef]

Proc. SPIE (1)

M.-L. Li and L. V. Wang, “A study of reconstruction in photoacoustic tomography with a focused transducer,” Proc. SPIE 6437, 64371E (2007).
[CrossRef]

Other (1)

F. Lingvall, “Time domain reconstruction methods for ultrasonic array imaging,” Ph.D. dissertation, Signals and Systems, Uppsala University, Uppsala, Sweden (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of normalized SIRs of a point detector and a finite-sized unfocused transducer (i.e., circular transducer) to an off-axis point source, and the problems caused by the SIR of the finite-sized unfocused transducer.

Fig. 2
Fig. 2

Illustration of sampling in (a) PAT data acquisition and (b) PAT sinogram

Fig. 3
Fig. 3

Reconstructed PAT images of simulated point absorbers where (x,y) = (0,0) is the scanning center. (a) Model-based correction method (b) Back-projection.

Fig. 4
Fig. 4

(a) Tangential resolution, (b) radial resolution, and (c) peak amplitude as a function of the distance away from the scanning center

Fig. 5
Fig. 5

Reconstructed PAT images using experimental data where cross-sections of five human black hairs are imaged and the scanning center is at (x,y) = (0,0). (a) Model-based correction method (b) Back-projection. The arrows in (b) indicate the interferences from hair sections out of image plane.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

h SIR ( r T , r , t ) = S T δ ( t ( | r r S T | / c ) ) 2 π | r r S T | d S T ,
y l ( θ l , t ) = h SIR ( θ l , r , t ) h e ( t ) p ( t ) o ( r ) ,
y l = n = 0 N 1 m = 0 M 1 h S I R ( θ l , x n , y m ) h e p o ( x n , y m ) , = n = 0 N 1 m = 0 M 1 s l ( x n , y m ) o ( x n , y m )
y = So + e
S = [ S 0 ( 0 ) S 0 ( 1 ) ... S 0 ( N 1 ) S 1 ( 0 ) S 1 ( 1 ) ... S 1 ( N 1 ) ... S L 1 ( 0 ) S L 1 ( 1 ) ... S L 1 ( N 1 ) ] .
K = C o S T ( S C o S T + C e ) 1 ,

Metrics