Abstract

A one-dimensional diatomic meta-chain with equal-size holes and different-length slits is designed. Broadband coherent magnetic plasmon waves (MPW) are formed in such a system, excited by both the electric resonance in the slits and the magnetic resonance in the holes in a wide range of incidence angles (0°40°) and broad frequency bands (200–230 THz). The dispersion properties of the MPW measured in our experiments agree with the theoretical calculation based on the Lagrange model. The coherent MPWs reported in this paper may have applications in subwavelength integrated nanocircuits.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  2. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [CrossRef] [PubMed]
  3. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [CrossRef] [PubMed]
  4. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [CrossRef] [PubMed]
  5. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [CrossRef]
  6. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
    [CrossRef] [PubMed]
  7. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  8. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [CrossRef] [PubMed]
  9. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  10. E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
    [CrossRef]
  11. O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
    [CrossRef]
  12. A. Radkovskaya, O. Sydoruk, M. Shamonin, E. Shamonina, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Experimental study of a bi-periodic magnetoinductive waveguide: comparison with theory,” IET Proc. Microwaves Antennas Propag. 1, 80–83 (2007).
    [CrossRef]
  13. I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, “Magnetoinductive waves in arrays of split-ring resonators,” Physica B 394(2), 180–183 (2007).
    [CrossRef]
  14. N. Liu and H. Giessen, “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling,” Opt. Express 16(26), 21233–21238 (2008).
    [CrossRef] [PubMed]
  15. M. Decker, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: Evidence for retardation effects,” Phys. Rev. B 80(19), 193102 (2009).
    [CrossRef]
  16. M. Decker, S. Linden, and M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34(10), 1579–1581 (2009).
    [CrossRef] [PubMed]
  17. M. Beruete, F. Falcone, M. J. Freire, R. Marques, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88(8), 083503 (2006).
    [CrossRef]
  18. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
    [CrossRef]
  19. J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
    [CrossRef]
  20. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
    [CrossRef]
  21. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
    [CrossRef]
  22. H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
    [CrossRef]
  23. T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators,” Phys. Rev. B 80(11), 115113 (2009).
    [CrossRef]
  24. J. Cao, H. Liu, T. Li, S. Wang, T. Li, S. Zhu, and X. Zhang, “Steering polarization of infrared light through hybridization effect in a tri-rod structure,” J. Opt. Soc. Am. B 26(12), B96–B101 (2009).
    [CrossRef]
  25. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
    [CrossRef] [PubMed]
  26. S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16(6), 3560–3565 (2008).
    [CrossRef] [PubMed]
  27. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
    [CrossRef]
  28. H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
    [CrossRef]
  29. O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87(7), 072501–072503 (2005).
    [CrossRef]

2010 (1)

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[CrossRef]

2009 (8)

T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators,” Phys. Rev. B 80(11), 115113 (2009).
[CrossRef]

J. Cao, H. Liu, T. Li, S. Wang, T. Li, S. Zhu, and X. Zhang, “Steering polarization of infrared light through hybridization effect in a tri-rod structure,” J. Opt. Soc. Am. B 26(12), B96–B101 (2009).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

M. Decker, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: Evidence for retardation effects,” Phys. Rev. B 80(19), 193102 (2009).
[CrossRef]

M. Decker, S. Linden, and M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34(10), 1579–1581 (2009).
[CrossRef] [PubMed]

2008 (4)

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

N. Liu and H. Giessen, “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling,” Opt. Express 16(26), 21233–21238 (2008).
[CrossRef] [PubMed]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16(6), 3560–3565 (2008).
[CrossRef] [PubMed]

2007 (3)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

A. Radkovskaya, O. Sydoruk, M. Shamonin, E. Shamonina, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Experimental study of a bi-periodic magnetoinductive waveguide: comparison with theory,” IET Proc. Microwaves Antennas Propag. 1, 80–83 (2007).
[CrossRef]

I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, “Magnetoinductive waves in arrays of split-ring resonators,” Physica B 394(2), 180–183 (2007).
[CrossRef]

2006 (6)

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

M. Beruete, F. Falcone, M. J. Freire, R. Marques, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88(8), 083503 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[CrossRef] [PubMed]

2005 (4)

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87(7), 072501–072503 (2005).
[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

2002 (1)

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Ameling, R.

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[CrossRef]

Baena, J. D.

M. Beruete, F. Falcone, M. J. Freire, R. Marques, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88(8), 083503 (2006).
[CrossRef]

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Beruete, M.

M. Beruete, F. Falcone, M. J. Freire, R. Marques, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88(8), 083503 (2006).
[CrossRef]

Bonache, J.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Burger, S.

M. Decker, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: Evidence for retardation effects,” Phys. Rev. B 80(19), 193102 (2009).
[CrossRef]

Cai, W.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Cao, J.

J. Cao, H. Liu, T. Li, S. Wang, T. Li, S. Zhu, and X. Zhang, “Steering polarization of infrared light through hybridization effect in a tri-rod structure,” J. Opt. Soc. Am. B 26(12), B96–B101 (2009).
[CrossRef]

Cao, J. X.

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators,” Phys. Rev. B 80(11), 115113 (2009).
[CrossRef]

Chettiar, U. K.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Decker, M.

M. Decker, S. Linden, and M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34(10), 1579–1581 (2009).
[CrossRef] [PubMed]

M. Decker, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: Evidence for retardation effects,” Phys. Rev. B 80(19), 193102 (2009).
[CrossRef]

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Dong, Z. G.

T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators,” Phys. Rev. B 80(11), 115113 (2009).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[CrossRef] [PubMed]

Drachev, V. P.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Edwards, D. J.

A. Radkovskaya, O. Sydoruk, M. Shamonin, E. Shamonina, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Experimental study of a bi-periodic magnetoinductive waveguide: comparison with theory,” IET Proc. Microwaves Antennas Propag. 1, 80–83 (2007).
[CrossRef]

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Falcone, F.

M. Beruete, F. Falcone, M. J. Freire, R. Marques, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88(8), 083503 (2006).
[CrossRef]

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Faulkner, G.

A. Radkovskaya, O. Sydoruk, M. Shamonin, E. Shamonina, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Experimental study of a bi-periodic magnetoinductive waveguide: comparison with theory,” IET Proc. Microwaves Antennas Propag. 1, 80–83 (2007).
[CrossRef]

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

Freire, M. J.

M. Beruete, F. Falcone, M. J. Freire, R. Marques, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88(8), 083503 (2006).
[CrossRef]

Garcia-Garcia, J.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef]

Giessen, H.

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[CrossRef]

N. Liu and H. Giessen, “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling,” Opt. Express 16(26), 21233–21238 (2008).
[CrossRef] [PubMed]

Gil, I.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Kaiser, S.

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[CrossRef]

Kalinin, V. A.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[CrossRef]

Kildishev, A. V.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Kivshar, Y. S.

I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, “Magnetoinductive waves in arrays of split-ring resonators,” Physica B 394(2), 180–183 (2007).
[CrossRef]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Laso, M. A. G.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Li, J. Q.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

Li, T.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators,” Phys. Rev. B 80(11), 115113 (2009).
[CrossRef]

J. Cao, H. Liu, T. Li, S. Wang, T. Li, S. Zhu, and X. Zhang, “Steering polarization of infrared light through hybridization effect in a tri-rod structure,” J. Opt. Soc. Am. B 26(12), B96–B101 (2009).
[CrossRef]

J. Cao, H. Liu, T. Li, S. Wang, T. Li, S. Zhu, and X. Zhang, “Steering polarization of infrared light through hybridization effect in a tri-rod structure,” J. Opt. Soc. Am. B 26(12), B96–B101 (2009).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16(6), 3560–3565 (2008).
[CrossRef] [PubMed]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[CrossRef] [PubMed]

Li, T. Q.

T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators,” Phys. Rev. B 80(11), 115113 (2009).
[CrossRef]

Linden, S.

M. Decker, S. Linden, and M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34(10), 1579–1581 (2009).
[CrossRef] [PubMed]

M. Decker, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: Evidence for retardation effects,” Phys. Rev. B 80(19), 193102 (2009).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Liu, H.

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators,” Phys. Rev. B 80(11), 115113 (2009).
[CrossRef]

J. Cao, H. Liu, T. Li, S. Wang, T. Li, S. Zhu, and X. Zhang, “Steering polarization of infrared light through hybridization effect in a tri-rod structure,” J. Opt. Soc. Am. B 26(12), B96–B101 (2009).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16(6), 3560–3565 (2008).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef]

Liu, N.

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

N. Liu and H. Giessen, “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling,” Opt. Express 16(26), 21233–21238 (2008).
[CrossRef] [PubMed]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef]

Liu, Z. W.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

Lopetegi, T.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Marques, R.

M. Beruete, F. Falcone, M. J. Freire, R. Marques, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88(8), 083503 (2006).
[CrossRef]

Martin, F.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Portillo, M. F.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Radkovskaya, A.

A. Radkovskaya, O. Sydoruk, M. Shamonin, E. Shamonina, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Experimental study of a bi-periodic magnetoinductive waveguide: comparison with theory,” IET Proc. Microwaves Antennas Propag. 1, 80–83 (2007).
[CrossRef]

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

Reznik, A. N.

I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, “Magnetoinductive waves in arrays of split-ring resonators,” Physica B 394(2), 180–183 (2007).
[CrossRef]

Ringhofer, K. H.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[CrossRef]

Sarychev, A. K.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Shadrivov, I. V.

I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, “Magnetoinductive waves in arrays of split-ring resonators,” Physica B 394(2), 180–183 (2007).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Shamonin, M.

A. Radkovskaya, O. Sydoruk, M. Shamonin, E. Shamonina, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Experimental study of a bi-periodic magnetoinductive waveguide: comparison with theory,” IET Proc. Microwaves Antennas Propag. 1, 80–83 (2007).
[CrossRef]

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

Shamonina, E.

A. Radkovskaya, O. Sydoruk, M. Shamonin, E. Shamonina, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Experimental study of a bi-periodic magnetoinductive waveguide: comparison with theory,” IET Proc. Microwaves Antennas Propag. 1, 80–83 (2007).
[CrossRef]

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87(7), 072501–072503 (2005).
[CrossRef]

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sillero, R. M.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Solymar, L.

A. Radkovskaya, O. Sydoruk, M. Shamonin, E. Shamonina, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Experimental study of a bi-periodic magnetoinductive waveguide: comparison with theory,” IET Proc. Microwaves Antennas Propag. 1, 80–83 (2007).
[CrossRef]

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87(7), 072501–072503 (2005).
[CrossRef]

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[CrossRef]

Sorolla, M.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Steele, J. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef]

Stevens, C. J.

A. Radkovskaya, O. Sydoruk, M. Shamonin, E. Shamonina, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Experimental study of a bi-periodic magnetoinductive waveguide: comparison with theory,” IET Proc. Microwaves Antennas Propag. 1, 80–83 (2007).
[CrossRef]

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef]

Sydoruk, O.

A. Radkovskaya, O. Sydoruk, M. Shamonin, E. Shamonina, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Experimental study of a bi-periodic magnetoinductive waveguide: comparison with theory,” IET Proc. Microwaves Antennas Propag. 1, 80–83 (2007).
[CrossRef]

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87(7), 072501–072503 (2005).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Wang, F. M.

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16(6), 3560–3565 (2008).
[CrossRef] [PubMed]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[CrossRef] [PubMed]

Wang, Q. J.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

Wang, S.

J. Cao, H. Liu, T. Li, S. Wang, T. Li, S. Zhu, and X. Zhang, “Steering polarization of infrared light through hybridization effect in a tri-rod structure,” J. Opt. Soc. Am. B 26(12), B96–B101 (2009).
[CrossRef]

Wang, S. M.

T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators,” Phys. Rev. B 80(11), 115113 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16(6), 3560–3565 (2008).
[CrossRef] [PubMed]

Wegener, M.

M. Decker, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: Evidence for retardation effects,” Phys. Rev. B 80(19), 193102 (2009).
[CrossRef]

M. Decker, S. Linden, and M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34(10), 1579–1581 (2009).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef]

Yuan, H.-K.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators,” Phys. Rev. B 80(11), 115113 (2009).
[CrossRef]

J. Cao, H. Liu, T. Li, S. Wang, T. Li, S. Zhu, and X. Zhang, “Steering polarization of infrared light through hybridization effect in a tri-rod structure,” J. Opt. Soc. Am. B 26(12), B96–B101 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16(6), 3560–3565 (2008).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Zhu, S.

J. Cao, H. Liu, T. Li, S. Wang, T. Li, S. Zhu, and X. Zhang, “Steering polarization of infrared light through hybridization effect in a tri-rod structure,” J. Opt. Soc. Am. B 26(12), B96–B101 (2009).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

Zhu, S. N.

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators,” Phys. Rev. B 80(11), 115113 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16(6), 3560–3565 (2008).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[CrossRef] [PubMed]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef]

Zhu, Y. Y.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

Zhu, Z. H.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators,” Phys. Rev. B 80(11), 115113 (2009).
[CrossRef]

Zhuromskyy, O.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87(7), 072501–072503 (2005).
[CrossRef]

Adv. Mater. (1)

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87(7), 072501–072503 (2005).
[CrossRef]

M. Beruete, F. Falcone, M. J. Freire, R. Marques, and J. D. Baena, “Electroinductive waves in chains of complementary metamaterial elements,” Appl. Phys. Lett. 88(8), 083503 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech. 53(4), 1451–1461 (2005).
[CrossRef]

IET Proc. Microwaves Antennas Propag. (1)

A. Radkovskaya, O. Sydoruk, M. Shamonin, E. Shamonina, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Experimental study of a bi-periodic magnetoinductive waveguide: comparison with theory,” IET Proc. Microwaves Antennas Propag. 1, 80–83 (2007).
[CrossRef]

J. Appl. Phys. (1)

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92(10), 6252–6261 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Cao, H. Liu, T. Li, S. Wang, T. Li, S. Zhu, and X. Zhang, “Steering polarization of infrared light through hybridization effect in a tri-rod structure,” J. Opt. Soc. Am. B 26(12), B96–B101 (2009).
[CrossRef]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[CrossRef]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

N. Liu and H. Giessen, “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling,” Opt. Express 16(26), 21233–21238 (2008).
[CrossRef] [PubMed]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14(23), 11155–11163 (2006).
[CrossRef] [PubMed]

S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express 16(6), 3560–3565 (2008).
[CrossRef] [PubMed]

Opt. Lett. (2)

M. Decker, S. Linden, and M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34(10), 1579–1581 (2009).
[CrossRef] [PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Phys. Rev. B (6)

M. Decker, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: Evidence for retardation effects,” Phys. Rev. B 80(19), 193102 (2009).
[CrossRef]

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B 73(22), 224406 (2006).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[CrossRef]

H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B 81(24), 241403 (2010).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, “Suppression of radiation loss by hybridization effect in two coupled split-ring resonators,” Phys. Rev. B 80(11), 115113 (2009).
[CrossRef]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79(2), 024304 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97(24), 243902 (2006).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Physica B (1)

I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, “Magnetoinductive waves in arrays of split-ring resonators,” Physica B 394(2), 180–183 (2007).
[CrossRef]

Science (5)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure (a) and equivalent LC circuit (b) of a single SHR.

Fig. 2
Fig. 2

Structure (a) and equivalent LC circuit of a SHR meta-chain; (c) FIB image of the fabricated sample.

Fig. 3
Fig. 3

(a).Observed transmission spectra under different incident angles; (b).The Measured transmission map and the calculated angular dependence curve of the optical mode of MPW.

Fig. 4
Fig. 4

(a). Dispersion properties of MPW; (b). Current distribution of induced current in one unit cell for the optical mode, in which the arrays represent the direction and the intensity of the incident electric field; (c). Current distribution for the acoustic mode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

= m ( L Q ˙ m 2 2 + L q ˙ m 2 2 ( Q m q m 1 ) 2 2 C 1 ( Q m q m ) 2 2 C 2 )
ω ± 2 = ( ω 1 2 + ω 2 2 ) ± ( ω 1 4 + ω 2 4 ) + 2 ω 1 2 ω 2 2 cos ( k d )

Metrics