Abstract

We analyze the scalability of amplifying the output from a single-frequency diode laser operating at 1178 nm through the utilization of a core pumped Raman fiber amplifier. A detailed model that accounts for stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) in relation to the fiber mode field diameter, length, seed power, and available pump power in both co-pumped and counter-pumped configurations is developed. The backward travelling Stokes light is initiated from both spontaneous Brillouin and spontaneous Raman processes. It is found that when fiber length is optimized, the amplifier output scales linearly with available pump power. Although higher amplifier efficiency is obtained with higher seed power, the output power diminishes. In order to mitigate the SBS process for further power scaling, we employ and optimize a multi-step temperature distribution. Finally, we consider the feasibility of generating the D2a and D2b lines in a sodium guide star beacon from a single Raman amplifier by examining four-wave mixing (FWM).

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Telle, J. Drummond, C. Denman, P. Hillman, G. Moore, and S. Novotny, “Studies of a mesospheric sodium guidestar pumped by continuous-wave sum frequency mixing of two Nd:YAG laser lines in lithium triborate,” Proc. SPIE 6215, 62150K (2006).
    [CrossRef]
  2. Y. Feng, L. R. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16(15), 10927–10932 (2008).
    [CrossRef] [PubMed]
  3. Y. Feng, L. R. Taylor, D. Bonaccini Calia, R. Holzlöhner, and W. Hackenberg, “39 W narrow linewidth Raman fiber amplifier with frequency doubling to 26.5 W at 589 nm,” presented at Frontiers in Optics, San Diego, postdeadline paper PDPA4 (2009).
  4. L. R. Taylor, Y. Feng, and D. B. Calia, “50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express 18(8), 8540–8555 (2010).
    [CrossRef] [PubMed]
  5. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  6. P. W. Milonni, R. Q. Fugate, and J. M. Telle, “Analysis of measured photon returns from sodium beacons,” J. Opt. Soc. Am. A 15(1), 217–233 (1998).
    [CrossRef]
  7. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
    [CrossRef]
  8. A. Wada, T. Nozawa, D. Tanaka, and R. Yamauchi, “Suppression of SBS by intentionally induced periodic residual-strain in single-mode optical fibers,” in Proc. of 17th ECOC, paper B1.1 (1991).
  9. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [CrossRef] [PubMed]
  10. Y. Imai and N. Shimada, “Two-frequency Brillouin fiber laser controlled by temperature difference in fiber ring resonator,” Opt. Rev. 1(1), 85–87 (1994).
    [CrossRef]
  11. R. Boyd, K. Rza̧ewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
    [CrossRef] [PubMed]
  12. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [CrossRef] [PubMed]
  13. M. D. Mermelstein, “SBS threshold measurements and acoustic beam propagation modeling in guiding and anti-guiding single mode optical fibers,” Opt. Express 17(18), 16225–16237 (2009).
    [CrossRef] [PubMed]
  14. K. Tankala, Nufern, 7 Airport Park Rd, East Granby, CT, 06026 (personal communication, 2010).
  15. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009).
    [CrossRef]
  16. I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
    [CrossRef] [PubMed]

2010 (1)

2009 (2)

2008 (2)

2007 (2)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Telle, J. Drummond, C. Denman, P. Hillman, G. Moore, and S. Novotny, “Studies of a mesospheric sodium guidestar pumped by continuous-wave sum frequency mixing of two Nd:YAG laser lines in lithium triborate,” Proc. SPIE 6215, 62150K (2006).
[CrossRef]

1998 (1)

1994 (1)

Y. Imai and N. Shimada, “Two-frequency Brillouin fiber laser controlled by temperature difference in fiber ring resonator,” Opt. Rev. 1(1), 85–87 (1994).
[CrossRef]

1990 (1)

R. Boyd, K. Rza̧ewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

1972 (1)

Bonaccini Calia, D.

Boyd, R.

R. Boyd, K. Rza̧ewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Bronder, T. J.

Calia, D. B.

Chen, X.

Crowley, A. M.

Dajani, I.

Demeritt, J. A.

Denman, C.

J. Telle, J. Drummond, C. Denman, P. Hillman, G. Moore, and S. Novotny, “Studies of a mesospheric sodium guidestar pumped by continuous-wave sum frequency mixing of two Nd:YAG laser lines in lithium triborate,” Proc. SPIE 6215, 62150K (2006).
[CrossRef]

Drummond, J.

J. Telle, J. Drummond, C. Denman, P. Hillman, G. Moore, and S. Novotny, “Studies of a mesospheric sodium guidestar pumped by continuous-wave sum frequency mixing of two Nd:YAG laser lines in lithium triborate,” Proc. SPIE 6215, 62150K (2006).
[CrossRef]

Feng, Y.

Fugate, R. Q.

Gavrielides, A.

Gray, S.

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Hillman, P.

J. Telle, J. Drummond, C. Denman, P. Hillman, G. Moore, and S. Novotny, “Studies of a mesospheric sodium guidestar pumped by continuous-wave sum frequency mixing of two Nd:YAG laser lines in lithium triborate,” Proc. SPIE 6215, 62150K (2006).
[CrossRef]

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Imai, Y.

Y. Imai and N. Shimada, “Two-frequency Brillouin fiber laser controlled by temperature difference in fiber ring resonator,” Opt. Rev. 1(1), 85–87 (1994).
[CrossRef]

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Li, M. J.

Liu, A.

Mermelstein, M. D.

Milonni, P. W.

Moore, G.

J. Telle, J. Drummond, C. Denman, P. Hillman, G. Moore, and S. Novotny, “Studies of a mesospheric sodium guidestar pumped by continuous-wave sum frequency mixing of two Nd:YAG laser lines in lithium triborate,” Proc. SPIE 6215, 62150K (2006).
[CrossRef]

Narum, P.

R. Boyd, K. Rza̧ewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Novotny, S.

J. Telle, J. Drummond, C. Denman, P. Hillman, G. Moore, and S. Novotny, “Studies of a mesospheric sodium guidestar pumped by continuous-wave sum frequency mixing of two Nd:YAG laser lines in lithium triborate,” Proc. SPIE 6215, 62150K (2006).
[CrossRef]

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Robin, C.

Ruffin, A. B.

Rza¸ewski, K.

R. Boyd, K. Rza̧ewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Shay, T.

Shimada, N.

Y. Imai and N. Shimada, “Two-frequency Brillouin fiber laser controlled by temperature difference in fiber ring resonator,” Opt. Rev. 1(1), 85–87 (1994).
[CrossRef]

Smith, R. G.

Taylor, L. R.

Telle, J.

J. Telle, J. Drummond, C. Denman, P. Hillman, G. Moore, and S. Novotny, “Studies of a mesospheric sodium guidestar pumped by continuous-wave sum frequency mixing of two Nd:YAG laser lines in lithium triborate,” Proc. SPIE 6215, 62150K (2006).
[CrossRef]

Telle, J. M.

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Walton, D. T.

Wang, J.

Zenteno, L. A.

Zeringue, C.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (6)

Opt. Rev. (1)

Y. Imai and N. Shimada, “Two-frequency Brillouin fiber laser controlled by temperature difference in fiber ring resonator,” Opt. Rev. 1(1), 85–87 (1994).
[CrossRef]

Phys. Rev. A (1)

R. Boyd, K. Rza̧ewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Telle, J. Drummond, C. Denman, P. Hillman, G. Moore, and S. Novotny, “Studies of a mesospheric sodium guidestar pumped by continuous-wave sum frequency mixing of two Nd:YAG laser lines in lithium triborate,” Proc. SPIE 6215, 62150K (2006).
[CrossRef]

Other (4)

A. Wada, T. Nozawa, D. Tanaka, and R. Yamauchi, “Suppression of SBS by intentionally induced periodic residual-strain in single-mode optical fibers,” in Proc. of 17th ECOC, paper B1.1 (1991).

G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

Y. Feng, L. R. Taylor, D. Bonaccini Calia, R. Holzlöhner, and W. Hackenberg, “39 W narrow linewidth Raman fiber amplifier with frequency doubling to 26.5 W at 589 nm,” presented at Frontiers in Optics, San Diego, postdeadline paper PDPA4 (2009).

K. Tankala, Nufern, 7 Airport Park Rd, East Granby, CT, 06026 (personal communication, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Raman signal evolution at SBS threshold for co and counter-pumped cases with optimized length and a pump power of 200 W.

Fig. 2
Fig. 2

(a) Raman power and (b) efficiency as a function of seed power and fiber length for co-pumping. Inset in figure shows linear dependence of Raman output with pump power at SBS threshold for one of the seed cases.

Fig. 3
Fig. 3

Stokes gain per unit length at SBS threshold for (a) 25 m fiber and (b) 150 m fiber. The total gain is the sum of the Brillouin and Raman gain.

Fig. 4
Fig. 4

Investigation of mode field diameter effect using a pump power of 200W while the fiber length varied until SBS threshold is reached. SBS reflectivity is shown in green and corresponds to each fiber length.

Fig. 5
Fig. 5

(a) Raman power and (b) efficiency achieved for both co-pumping and counter-pumping as a function of seed power and length of fiber using a three-step temperature profile (i.e. four temperature regions).

Fig. 6
Fig. 6

(a)The evolution of each Stokes signal in a 150 m fiber until SBS threshold was reached. (b) The characteristic evolution of each Stokes channel at the respective calculated length.

Fig. 7
Fig. 7

Three-step temperature profile (i.e. four different temperature regions) applied to a 150 m fiber seeded with 16 mW showing the relative lengths of the fiber segments.

Fig. 8
Fig. 8

(a) The spatial evolution of the two Raman signals in a 150 m fiber for co-pumped and counter-pumped configurations. (b) The spatial evolution of the corresponding FWM sidebands.

Fig. 9
Fig. 9

(a) The spatial evolution of the two Raman signals in a 25 m fiber for co-pumped and counter-pumped configurations. (b) The spatial evolution of the corresponding FWM sidebands.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

d P R d z = ( g R P P i g B , i P S , i α R ) P R ,
d P S , i d z = ( g R P P + g B , i P R α R ) P S , i ,
d P P d z = γ g R ( P R + i P S , i ) P P α P P P ,
A e f f , R = | φ R ( x , y ) | 2 d x d y | φ P ( x , y ) | 2 d x d y | φ R ( x , y ) | 2 | φ P ( x , y ) | 2 d x d y ,
A e f f , B = ( | φ R ( x , y ) | 2 d x d y ) 2 | φ R ( x , y ) | 4 d x d y .
d P R d z = ( g R P P i , j g B , i , j P S , i , j α R ) P R ,
d P S , i , j d z = ( g R P P + g B , i , j P R α R ) P S , i , j ,
d P P d z = γ g R ( P R + i , j P S , i , j ) P P α P P P ,
δ S , i , j = ω S , i , j Δ ω 2 π ( exp [ ( ω R ω S , i , j ) / k T j ] 1 ) ,
δ S , R = ω S , i , j Δ ω 2 π .
d d z ( P R ω R i P S , i ω R ± P P ω P ) = 0 ,
P R ( z ) = C 1 P R ( 0 ) exp [ g R C 1 z ] P P ( 0 ) + γ P R ( 0 ) exp [ g R C 1 z ] ,
P R ( z ) = C 2 P R ( 0 ) exp [ g R C 2 z ] C 2 + γ P R ( 0 ) ( 1 exp [ g R C 2 z ] ) ,
R = P S ( 0 ) P R ( L ) P S ( L ) ( P P ( 0 ) + γ P R ( 0 ) exp [ g R C 1 L ] P P ( 0 ) + γ P R ( 0 ) ) g B γ g R 1 ,
0 L 1 e g R P p z d z = 1 N 1 L 1 L e g R P p z d z ,
L 1 L 2 e g R P p z d z = 1 N 2 L 2 L e g R P p z d z ,
L 2 L 3 e g R P p z d z = 1 N 3 L 3 L e g R P p z d z ,
L N 2 L N 1 e g R P p z d z = L N 1 L N e g R P p z d z .
d P 1 d z = g R P 1 P P ,
d P 2 d z = g R P 2 P P ,
d P p d z = γ g R ( P 1 + P 2 ) P P ,
P 2 ( z ) = P 2 ( 0 ) P 1 ( 0 ) P 1 ( z ) .
P 1 ( z ) = C 3 P 1 ( 0 ) exp [ C 3 g R z ] P P ( 0 ) + γ ( P 1 ( 0 ) + P 2 ( 0 ) ) exp [ C 3 g R z ] ,
P 1 ( z )   = C 4 P 1 ( 0 ) exp [ C 4 g R z ] C 4 + γ P 1 ( 0 ) ( 1 + θ ) ( 1 exp [ C 4 g R z ] ) ,
d A P d z = γ g r o ε o c   n R κ 1 4 ( | A 1 | 2 + | A 2 | 2 + | A 3 | 2 + | A 4 | 2 ) A P ,
κ 1 = | φ R ( x , y ) | 2 | φ P ( x , y ) | 2 d x d y | φ P ( x , y ) | 2 d x d y .
d A i d z = g r o ε o c   n P κ 2 4 | A P | 2 A i + i ω R n ( 2 ) κ 3 c ( ( | A i | 2 + 2 j i | A j | 2 ) A i + 2 A i * A k A i + 2 exp [ i β ( 2 ) ( Δ ω ) 2 z ] + 2 A k * A 3 A 4 exp [ 2 i β ( 2 ) ( Δ ω ) 2 z ] + A k 2 A k + 2 * exp [ i β ( 2 ) ( Δ ω ) 2 z ] ) ,
κ 2 = | φ R ( x , y ) | 2 | φ P ( x , y ) | 2 d x d y | φ R ( x , y ) | 2 d x d y ,
κ 3 = | φ R ( x , y ) | 4 d x d y | φ R ( x , y ) | 2 d x d y .
d A i + 2 d z = g r o ε o c   n P κ 2 4 | A P | 2 A i + 2 + i ω R n ( 2 ) κ 3 c ( ( | A i + 2 | 2 + 2 j i + 2 | A j | 2 ) A i + 2 + A i 2 A k * exp [ i β ( 2 ) ( Δ ω ) 2 z ] + 2 A 1 A 2 A k + 2 * exp [ 2 i β ( 2 ) ( Δ ω ) 2 z ] ) .

Metrics