Abstract

This paper presents different strategies to define the architecture of a Radio-Over-Fiber (RoF) Access networks enabling Peer-to-Peer (P2P) functionalities. The architectures fully exploit the flexibility of a wavelength router based on the feedback configuration of an Arrayed Waveguide Grating (AWG) and an optical switch to broadcast P2P services among diverse infrastructures featuring dynamic channel allocation and enabling an optical platform for 3G and beyond wireless backhaul requirements. The first architecture incorporates a tunable laser to generate a dedicated wavelength for P2P purposes and the second architecture takes advantage of reused wavelengths to enable the P2P connectivity among Optical Network Units (ONUs) or Base Stations (BS). While these two approaches allow the P2P connectivity in a one at a time basis (1:1), the third architecture enables the broadcasting of P2P sessions among different ONUs or BSs at the same time (1:M). Experimental assessment of the proposed architecture shows approximately 0.6% Error Vector Magnitude (EVM) degradation for wireless services and 1 dB penalty in average for 1x10−12 Bit Error Rate (BER) for wired baseband services.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari, “Will IPTV ride the peer-to-peer stream?” IEEE Commun. Mag. 45(6), 86–92 (2007).
    [CrossRef]
  2. C. P. Larsen, A. Gavler, and S. Junique, “The Impact of Peer-to-Peer networking on user behaviour and network design,” in Optical Fiber Communication Conference and Exposition (OFC), Optical Society of America, Washington, DC, 2010, paper NTuA5.
  3. G. K. Venkatesan, and K. Kulkarni, “Wireless backhaul for LTE - requirements, challenges and options,” 2nd International Symposium on Advanced Networks and Telecommunication Systems, 2008. ANTS '08, pp.1–3, 15–17 Dec. 2008.
  4. J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. I. Kitayama, “Wireless and Optical-Integrated Access Network With Peer-To-Peer Connection Capability,” IEEE Photon. Technol. Lett. 20(13), 1127–1129 (2008).
    [CrossRef]
  5. B. Ortega, J. Mora, G. Puerto, and J. Capmany, “Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network,” Opt. Express 15(25), 16781–16786 (2007).
    [CrossRef] [PubMed]
  6. G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Wavelength Data Rewriter for Centralized-Source Radio-Over-Fiber Access Networks,” IEEE Photon. Technol. Lett. 22(15), 1102–1104 (2010).
    [CrossRef]

2010

G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Wavelength Data Rewriter for Centralized-Source Radio-Over-Fiber Access Networks,” IEEE Photon. Technol. Lett. 22(15), 1102–1104 (2010).
[CrossRef]

2008

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. I. Kitayama, “Wireless and Optical-Integrated Access Network With Peer-To-Peer Connection Capability,” IEEE Photon. Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

2007

B. Ortega, J. Mora, G. Puerto, and J. Capmany, “Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network,” Opt. Express 15(25), 16781–16786 (2007).
[CrossRef] [PubMed]

A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari, “Will IPTV ride the peer-to-peer stream?” IEEE Commun. Mag. 45(6), 86–92 (2007).
[CrossRef]

Capmany, J.

G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Wavelength Data Rewriter for Centralized-Source Radio-Over-Fiber Access Networks,” IEEE Photon. Technol. Lett. 22(15), 1102–1104 (2010).
[CrossRef]

B. Ortega, J. Mora, G. Puerto, and J. Capmany, “Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network,” Opt. Express 15(25), 16781–16786 (2007).
[CrossRef] [PubMed]

Gerla, M.

A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari, “Will IPTV ride the peer-to-peer stream?” IEEE Commun. Mag. 45(6), 86–92 (2007).
[CrossRef]

Kitayama, K. I.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. I. Kitayama, “Wireless and Optical-Integrated Access Network With Peer-To-Peer Connection Capability,” IEEE Photon. Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

Kleinrock, L.

A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari, “Will IPTV ride the peer-to-peer stream?” IEEE Commun. Mag. 45(6), 86–92 (2007).
[CrossRef]

Kuri, T.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. I. Kitayama, “Wireless and Optical-Integrated Access Network With Peer-To-Peer Connection Capability,” IEEE Photon. Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

Marfia, G.

A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari, “Will IPTV ride the peer-to-peer stream?” IEEE Commun. Mag. 45(6), 86–92 (2007).
[CrossRef]

Mora, J.

G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Wavelength Data Rewriter for Centralized-Source Radio-Over-Fiber Access Networks,” IEEE Photon. Technol. Lett. 22(15), 1102–1104 (2010).
[CrossRef]

B. Ortega, J. Mora, G. Puerto, and J. Capmany, “Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network,” Opt. Express 15(25), 16781–16786 (2007).
[CrossRef] [PubMed]

Ortega, B.

G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Wavelength Data Rewriter for Centralized-Source Radio-Over-Fiber Access Networks,” IEEE Photon. Technol. Lett. 22(15), 1102–1104 (2010).
[CrossRef]

B. Ortega, J. Mora, G. Puerto, and J. Capmany, “Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network,” Opt. Express 15(25), 16781–16786 (2007).
[CrossRef] [PubMed]

Puerto, G.

G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Wavelength Data Rewriter for Centralized-Source Radio-Over-Fiber Access Networks,” IEEE Photon. Technol. Lett. 22(15), 1102–1104 (2010).
[CrossRef]

B. Ortega, J. Mora, G. Puerto, and J. Capmany, “Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network,” Opt. Express 15(25), 16781–16786 (2007).
[CrossRef] [PubMed]

Sentinelli, A.

A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari, “Will IPTV ride the peer-to-peer stream?” IEEE Commun. Mag. 45(6), 86–92 (2007).
[CrossRef]

Sono, T.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. I. Kitayama, “Wireless and Optical-Integrated Access Network With Peer-To-Peer Connection Capability,” IEEE Photon. Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

Tamura, K.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. I. Kitayama, “Wireless and Optical-Integrated Access Network With Peer-To-Peer Connection Capability,” IEEE Photon. Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

Tewari, S.

A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari, “Will IPTV ride the peer-to-peer stream?” IEEE Commun. Mag. 45(6), 86–92 (2007).
[CrossRef]

Toda, H.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. I. Kitayama, “Wireless and Optical-Integrated Access Network With Peer-To-Peer Connection Capability,” IEEE Photon. Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

Vegas Olmos, J. J.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. I. Kitayama, “Wireless and Optical-Integrated Access Network With Peer-To-Peer Connection Capability,” IEEE Photon. Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

IEEE Commun. Mag.

A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari, “Will IPTV ride the peer-to-peer stream?” IEEE Commun. Mag. 45(6), 86–92 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

J. J. Vegas Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. I. Kitayama, “Wireless and Optical-Integrated Access Network With Peer-To-Peer Connection Capability,” IEEE Photon. Technol. Lett. 20(13), 1127–1129 (2008).
[CrossRef]

G. Puerto, J. Mora, B. Ortega, and J. Capmany, “Wavelength Data Rewriter for Centralized-Source Radio-Over-Fiber Access Networks,” IEEE Photon. Technol. Lett. 22(15), 1102–1104 (2010).
[CrossRef]

Opt. Express

B. Ortega, J. Mora, G. Puerto, and J. Capmany, “Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network,” Opt. Express 15(25), 16781–16786 (2007).
[CrossRef] [PubMed]

Other

C. P. Larsen, A. Gavler, and S. Junique, “The Impact of Peer-to-Peer networking on user behaviour and network design,” in Optical Fiber Communication Conference and Exposition (OFC), Optical Society of America, Washington, DC, 2010, paper NTuA5.

G. K. Venkatesan, and K. Kulkarni, “Wireless backhaul for LTE - requirements, challenges and options,” 2nd International Symposium on Advanced Networks and Telecommunication Systems, 2008. ANTS '08, pp.1–3, 15–17 Dec. 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

P2P connectivity exploitation environment for fixed and mobiles users enabling convergent wired/wireless access networks and beyond 3G backhauling.

Fig. 2
Fig. 2

(a) Layout of the dedicated wavelength P2P architecture (1:1). (b) Scenarios of P2P sessions, left, scenario 1 from ONU/BS-1 to ONU/BS-2 and 3. Right, scenario 2 from ONU/BS-3 to ONU/BS-1 and 2.

Fig. 3
Fig. 3

(a) Layout of the wavelength reuse P2P architecture (1:1). (b) Scenarios of P2P sessions, left, scenario 1 from ONU/BS-1 to ONU/BS 2 and 3. Right, scenario 2 from ONU/BS-3 to ONU/BS-1 and 2.

Fig. 4
Fig. 4

(a) Layout of the wavelength reuse P2P architecture (1:M). (b) Scenarios of P2P sessions, left, scenario 1 from ONU/BS-1 to ONU/BS-2, 3 and 4. Right, scenario 2 from ONU/BS-3 to ONU/BS-1, 2 and 4.

Fig. 5
Fig. 5

Experimental results. (a), (b) Signal quality of the P2P services. (c), (d) Signal quality of the uplink services.

Fig. 6
Fig. 6

Experimental results. (a), (b) Signal quality of the P2P services. (c), (d) Signal quality of the upstream services.

Fig. 7
Fig. 7

Experimental results. (a), (b) Signal quality of the P2P services. (c), (d) Signal quality of the upstream services.

Tables (1)

Tables Icon

Table 1 Summary of services for downlink and P2P connectivity

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P A W G = [ M + N + ( M 1 ) ] i n x [ M + N ] o u t
P A W G _ P 2 P = [ M 1 ] i n x [ M ] o u t
P S w i t c h _ P 2 P = [ M ] i n x [ M 1 ] o u t
P A W G = [ M + N + L ] i n x [ M + N ] o u t .
P A W G _ P 2 P = [ L ] i n x [ M ] o u t ,
P S w i t c h _ P 2 P = [ M ] i n x [ M ] o u t .

Metrics