Abstract

Polychromatic defocus could affect the optimal residual spherical aberration that could yield the best image quality for patients with intraocular lenses (IOLs). Modulation transfer functions (MTFs) were generated using a model that included polychromatic defocus. The maximum MTF volume occurred at + 0.05 μm of overall ocular spherical aberration. For 3 case studies, the optimal overall ocular spherical aberration was ~0.05 μm more positive with the contribution of polychromatic defocus than without it. Overall, the model indicated that image quality was usually best when IOLs allowed overall ocular spherical aberration that was slightly positive, rather than strongly positive, zero, or negative.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
    [PubMed]
  2. G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
    [CrossRef] [PubMed]
  3. T. Tamer, G. Ipek, Y. Yelda, and C. Izzet, “Ocular wavefront analysis and contrast sensitivity in eyes implanted with AcrySof IQ or AcrySof Natural intraocular lenses,” Acta Ophthalmol. (Copenh.) 87, 759–763 (2008).
  4. S. T. Awwad, D. Warmerdam, R. W. Bowman, S. Dwarakanathan, H. D. Cavanagh, and J. P. McCulley, “Contrast sensitivity and higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses,” J. Refract. Surg. 24(6), 619–625 (2008).
    [PubMed]
  5. L. Cadarso, A. Iglesias, A. Ollero, B. Pita, and R. Montés-Micó, “Postoperative optical aberrations in eyes implanted with AcrySof spherical and aspheric intraocular lenses,” J. Refract. Surg. 24(8), 811–816 (2008).
    [PubMed]
  6. L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002).
    [CrossRef] [PubMed]
  7. X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
    [CrossRef] [PubMed]
  8. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
    [CrossRef] [PubMed]
  9. Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
    [CrossRef] [PubMed]
  10. J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35(7), 1229–1233 (2009).
    [CrossRef] [PubMed]
  11. D. D. Koch and L. Wang, “Custom optimization of intraocular lens asphericity,” Trans. Am. Ophthalmol. Soc. 105, 36–41, discussion 41–42 (2007).
  12. P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23(4), 374–384 (2007).
    [PubMed]
  13. G. H. H. Beiko, “Personalized correction of spherical aberration in cataract surgery,” J. Cataract Refract. Surg. 33(8), 1455–1460 (2007).
    [CrossRef] [PubMed]
  14. T. Ferrer-Blasco, “Effect of partial and full correction of corneal spherical aberration on visual acuity and contrast sensitivity,” J. Cataract Refract. Surg. 35(5), 949–951 (2009).
    [CrossRef] [PubMed]
  15. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
    [CrossRef]
  16. M. Jalie, “Form and material of ophthalmic lenses,” in Ophthalmic Lenses & Dispensing (Elsevier Health Sciences, 2003), pp. 27–38.
  17. R. J. Lee, and R. Tahran, “Vision correction for the older adult,” in Rosenbloom & Morgan's Vision and Aging, A. A. Rosenbloom and M. W. Morgan, eds. (Elsevier Health Sciences, 2006), pp. 201–214.
  18. G. M. Dai, “Optical surface optimization for the correction of presbyopia,” Appl. Opt. 45(17), 4184–4195 (2006).
    [CrossRef] [PubMed]
  19. L. Wang and D. D. Koch, “Effect of decentration of wavefront-corrected intraocular lenses on the higher-order aberrations of the eye,” Arch. Ophthalmol. 123(9), 1226–1230 (2005).
    [CrossRef] [PubMed]
  20. D. Atchison, and G. Smith, “Light and the eye,” in Optics of the Human Eye (Butterworth-Heinemann, 2000), pp. 99–104.
  21. Y. Le Grand, Form and Space Vision, translated by G.G. Heath and M. Millodot. (Indiana University Press, 1967).
  22. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
    [CrossRef] [PubMed]
  23. H. von Helmholtz, Helmholtz's Treatise on Physiological Optics, English translation published in 1924 from the 3rd German edition, published 1909. Translated by J. P. C. Southhall (Optical Society of America, 1924).
  24. I. Ivanoff, Les Aberrations de L'Oeil (Editions de la Revue d'Optique Theorique et Instrumentale, 1953).
  25. R. L. De Valois, and K. K. De Valois, Spatial Vision (Oxford Psychology Series, No. 14), (Oxford University Press, 1988).
  26. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
    [CrossRef]
  27. L. Thibos, N. Himebaugh, and C. Coe, “Wavefront refraction,” in Borish's Clinical Refraction, W. Benjamin, ed. (Butterworth Heinemann Elsevier, 2006), pp. 765–789.
  28. J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
    [CrossRef] [PubMed]
  29. R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
    [CrossRef] [PubMed]
  30. P. R. Trueb, C. Albach, R. Montés-Micó, and T. Ferrer-Blasco, “Visual acuity and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses,” Ophthalmology 116(5), 890–895 (2009).
    [CrossRef] [PubMed]
  31. W. Hill, “What intraocular lens should I use in the postkeratorefractive patient?” in Curbside Consultation in Cataract Surgery, D. Chang, T. Kim, and T. Oetting, eds. (Slack, Inc., 2007), pp. 43–47.
  32. K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottós, J. Bottós, L. Morimoto, and W. Nosé, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142(5), 750–756 (2006).
    [CrossRef] [PubMed]
  33. T. Kohnen, O. K. Klaproth, and J. Bühren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116(9), 1697–1706 (2009).
    [CrossRef] [PubMed]

2009 (4)

J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35(7), 1229–1233 (2009).
[CrossRef] [PubMed]

T. Ferrer-Blasco, “Effect of partial and full correction of corneal spherical aberration on visual acuity and contrast sensitivity,” J. Cataract Refract. Surg. 35(5), 949–951 (2009).
[CrossRef] [PubMed]

P. R. Trueb, C. Albach, R. Montés-Micó, and T. Ferrer-Blasco, “Visual acuity and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses,” Ophthalmology 116(5), 890–895 (2009).
[CrossRef] [PubMed]

T. Kohnen, O. K. Klaproth, and J. Bühren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116(9), 1697–1706 (2009).
[CrossRef] [PubMed]

2008 (3)

T. Tamer, G. Ipek, Y. Yelda, and C. Izzet, “Ocular wavefront analysis and contrast sensitivity in eyes implanted with AcrySof IQ or AcrySof Natural intraocular lenses,” Acta Ophthalmol. (Copenh.) 87, 759–763 (2008).

S. T. Awwad, D. Warmerdam, R. W. Bowman, S. Dwarakanathan, H. D. Cavanagh, and J. P. McCulley, “Contrast sensitivity and higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses,” J. Refract. Surg. 24(6), 619–625 (2008).
[PubMed]

L. Cadarso, A. Iglesias, A. Ollero, B. Pita, and R. Montés-Micó, “Postoperative optical aberrations in eyes implanted with AcrySof spherical and aspheric intraocular lenses,” J. Refract. Surg. 24(8), 811–816 (2008).
[PubMed]

2007 (3)

D. D. Koch and L. Wang, “Custom optimization of intraocular lens asphericity,” Trans. Am. Ophthalmol. Soc. 105, 36–41, discussion 41–42 (2007).

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23(4), 374–384 (2007).
[PubMed]

G. H. H. Beiko, “Personalized correction of spherical aberration in cataract surgery,” J. Cataract Refract. Surg. 33(8), 1455–1460 (2007).
[CrossRef] [PubMed]

2006 (3)

G. M. Dai, “Optical surface optimization for the correction of presbyopia,” Appl. Opt. 45(17), 4184–4195 (2006).
[CrossRef] [PubMed]

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottós, J. Bottós, L. Morimoto, and W. Nosé, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142(5), 750–756 (2006).
[CrossRef] [PubMed]

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
[CrossRef] [PubMed]

2005 (3)

Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
[CrossRef] [PubMed]

L. Wang and D. D. Koch, “Effect of decentration of wavefront-corrected intraocular lenses on the higher-order aberrations of the eye,” Arch. Ophthalmol. 123(9), 1226–1230 (2005).
[CrossRef] [PubMed]

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
[CrossRef] [PubMed]

2004 (1)

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[CrossRef] [PubMed]

2003 (2)

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
[CrossRef] [PubMed]

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
[CrossRef] [PubMed]

2002 (3)

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
[CrossRef]

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002).
[CrossRef] [PubMed]

1999 (1)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[CrossRef]

1992 (1)

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[CrossRef] [PubMed]

Albach, C.

P. R. Trueb, C. Albach, R. Montés-Micó, and T. Ferrer-Blasco, “Visual acuity and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses,” Ophthalmology 116(5), 890–895 (2009).
[CrossRef] [PubMed]

Altmann, G. E.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
[CrossRef] [PubMed]

Applegate, R. A.

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
[CrossRef] [PubMed]

Artal, P.

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23(4), 374–384 (2007).
[PubMed]

Avni, I.

Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
[CrossRef] [PubMed]

Awwad, S. T.

S. T. Awwad, D. Warmerdam, R. W. Bowman, S. Dwarakanathan, H. D. Cavanagh, and J. P. McCulley, “Contrast sensitivity and higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses,” J. Refract. Surg. 24(6), 619–625 (2008).
[PubMed]

Beiko, G. H. H.

G. H. H. Beiko, “Personalized correction of spherical aberration in cataract surgery,” J. Cataract Refract. Surg. 33(8), 1455–1460 (2007).
[CrossRef] [PubMed]

Bottós, J.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottós, J. Bottós, L. Morimoto, and W. Nosé, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142(5), 750–756 (2006).
[CrossRef] [PubMed]

Bottós, K.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottós, J. Bottós, L. Morimoto, and W. Nosé, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142(5), 750–756 (2006).
[CrossRef] [PubMed]

Bowman, R. W.

S. T. Awwad, D. Warmerdam, R. W. Bowman, S. Dwarakanathan, H. D. Cavanagh, and J. P. McCulley, “Contrast sensitivity and higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses,” J. Refract. Surg. 24(6), 619–625 (2008).
[PubMed]

Bradley, A.

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[CrossRef] [PubMed]

Bühren, J.

T. Kohnen, O. K. Klaproth, and J. Bühren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116(9), 1697–1706 (2009).
[CrossRef] [PubMed]

Burns, S. A.

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[CrossRef]

Cadarso, L.

L. Cadarso, A. Iglesias, A. Ollero, B. Pita, and R. Montés-Micó, “Postoperative optical aberrations in eyes implanted with AcrySof spherical and aspheric intraocular lenses,” J. Refract. Surg. 24(8), 811–816 (2008).
[PubMed]

Cavanagh, H. D.

S. T. Awwad, D. Warmerdam, R. W. Bowman, S. Dwarakanathan, H. D. Cavanagh, and J. P. McCulley, “Contrast sensitivity and higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses,” J. Refract. Surg. 24(6), 619–625 (2008).
[PubMed]

Chalita, M. R.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottós, J. Bottós, L. Morimoto, and W. Nosé, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142(5), 750–756 (2006).
[CrossRef] [PubMed]

Cheng, X.

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
[CrossRef]

Choi, S. S.

J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35(7), 1229–1233 (2009).
[CrossRef] [PubMed]

Dai, G. M.

G. M. Dai, “Optical surface optimization for the correction of presbyopia,” Appl. Opt. 45(17), 4184–4195 (2006).
[CrossRef] [PubMed]

Doble, N.

J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35(7), 1229–1233 (2009).
[CrossRef] [PubMed]

Dwarakanathan, S.

S. T. Awwad, D. Warmerdam, R. W. Bowman, S. Dwarakanathan, H. D. Cavanagh, and J. P. McCulley, “Contrast sensitivity and higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses,” J. Refract. Surg. 24(6), 619–625 (2008).
[PubMed]

Elliott, S. L.

J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35(7), 1229–1233 (2009).
[CrossRef] [PubMed]

Ferrer-Blasco, T.

T. Ferrer-Blasco, “Effect of partial and full correction of corneal spherical aberration on visual acuity and contrast sensitivity,” J. Cataract Refract. Surg. 35(5), 949–951 (2009).
[CrossRef] [PubMed]

P. R. Trueb, C. Albach, R. Montés-Micó, and T. Ferrer-Blasco, “Visual acuity and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses,” Ophthalmology 116(5), 890–895 (2009).
[CrossRef] [PubMed]

Holladay, J. T.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

Hong, X.

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
[CrossRef]

Howland, H. C.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[CrossRef] [PubMed]

Iglesias, A.

L. Cadarso, A. Iglesias, A. Ollero, B. Pita, and R. Montés-Micó, “Postoperative optical aberrations in eyes implanted with AcrySof spherical and aspheric intraocular lenses,” J. Refract. Surg. 24(8), 811–816 (2008).
[PubMed]

Ipek, G.

T. Tamer, G. Ipek, Y. Yelda, and C. Izzet, “Ocular wavefront analysis and contrast sensitivity in eyes implanted with AcrySof IQ or AcrySof Natural intraocular lenses,” Acta Ophthalmol. (Copenh.) 87, 759–763 (2008).

Izzet, C.

T. Tamer, G. Ipek, Y. Yelda, and C. Izzet, “Ocular wavefront analysis and contrast sensitivity in eyes implanted with AcrySof IQ or AcrySof Natural intraocular lenses,” Acta Ophthalmol. (Copenh.) 87, 759–763 (2008).

Kelly, J. E.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[CrossRef] [PubMed]

Klaproth, O. K.

T. Kohnen, O. K. Klaproth, and J. Bühren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116(9), 1697–1706 (2009).
[CrossRef] [PubMed]

Koch, D. D.

D. D. Koch and L. Wang, “Custom optimization of intraocular lens asphericity,” Trans. Am. Ophthalmol. Soc. 105, 36–41, discussion 41–42 (2007).

L. Wang and D. D. Koch, “Effect of decentration of wavefront-corrected intraocular lenses on the higher-order aberrations of the eye,” Arch. Ophthalmol. 123(9), 1226–1230 (2005).
[CrossRef] [PubMed]

Kohnen, T.

T. Kohnen, O. K. Klaproth, and J. Bühren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116(9), 1697–1706 (2009).
[CrossRef] [PubMed]

Koranyi, G.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

Lane, S. S.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
[CrossRef] [PubMed]

Levy, Y.

Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
[CrossRef] [PubMed]

Marcos, S.

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[CrossRef]

Marsack, J. D.

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
[CrossRef] [PubMed]

McCulley, J. P.

S. T. Awwad, D. Warmerdam, R. W. Bowman, S. Dwarakanathan, H. D. Cavanagh, and J. P. McCulley, “Contrast sensitivity and higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses,” J. Refract. Surg. 24(6), 619–625 (2008).
[PubMed]

McLellan, J. S.

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
[CrossRef] [PubMed]

Mihashi, T.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[CrossRef] [PubMed]

Montés-Micó, R.

P. R. Trueb, C. Albach, R. Montés-Micó, and T. Ferrer-Blasco, “Visual acuity and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses,” Ophthalmology 116(5), 890–895 (2009).
[CrossRef] [PubMed]

L. Cadarso, A. Iglesias, A. Ollero, B. Pita, and R. Montés-Micó, “Postoperative optical aberrations in eyes implanted with AcrySof spherical and aspheric intraocular lenses,” J. Refract. Surg. 24(8), 811–816 (2008).
[PubMed]

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[CrossRef]

Morimoto, L.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottós, J. Bottós, L. Morimoto, and W. Nosé, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142(5), 750–756 (2006).
[CrossRef] [PubMed]

Navarro, R.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[CrossRef]

Nichamin, L. D.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
[CrossRef] [PubMed]

Norrby, N. E.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

Norrby, S.

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23(4), 374–384 (2007).
[PubMed]

Nosé, W.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottós, J. Bottós, L. Morimoto, and W. Nosé, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142(5), 750–756 (2006).
[CrossRef] [PubMed]

Ollero, A.

L. Cadarso, A. Iglesias, A. Ollero, B. Pita, and R. Montés-Micó, “Postoperative optical aberrations in eyes implanted with AcrySof spherical and aspheric intraocular lenses,” J. Refract. Surg. 24(8), 811–816 (2008).
[PubMed]

Pepose, J. S.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
[CrossRef] [PubMed]

Piers, P. A.

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23(4), 374–384 (2007).
[PubMed]

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

Pita, B.

L. Cadarso, A. Iglesias, A. Ollero, B. Pita, and R. Montés-Micó, “Postoperative optical aberrations in eyes implanted with AcrySof spherical and aspheric intraocular lenses,” J. Refract. Surg. 24(8), 811–816 (2008).
[PubMed]

Prieto, P. M.

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
[CrossRef] [PubMed]

Ramos, R.

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
[CrossRef] [PubMed]

Rocha, K. M.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottós, J. Bottós, L. Morimoto, and W. Nosé, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142(5), 750–756 (2006).
[CrossRef] [PubMed]

Sarver, E. J.

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
[CrossRef] [PubMed]

Segal, O.

Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
[CrossRef] [PubMed]

Soriano, E. S.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottós, J. Bottós, L. Morimoto, and W. Nosé, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142(5), 750–756 (2006).
[CrossRef] [PubMed]

Tamer, T.

T. Tamer, G. Ipek, Y. Yelda, and C. Izzet, “Ocular wavefront analysis and contrast sensitivity in eyes implanted with AcrySof IQ or AcrySof Natural intraocular lenses,” Acta Ophthalmol. (Copenh.) 87, 759–763 (2008).

Thibos, L. N.

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[CrossRef] [PubMed]

Trueb, P. R.

P. R. Trueb, C. Albach, R. Montés-Micó, and T. Ferrer-Blasco, “Visual acuity and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses,” Ophthalmology 116(5), 890–895 (2009).
[CrossRef] [PubMed]

van der Mooren, M.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

Wang, L.

D. D. Koch and L. Wang, “Custom optimization of intraocular lens asphericity,” Trans. Am. Ophthalmol. Soc. 105, 36–41, discussion 41–42 (2007).

L. Wang and D. D. Koch, “Effect of decentration of wavefront-corrected intraocular lenses on the higher-order aberrations of the eye,” Arch. Ophthalmol. 123(9), 1226–1230 (2005).
[CrossRef] [PubMed]

Warmerdam, D.

S. T. Awwad, D. Warmerdam, R. W. Bowman, S. Dwarakanathan, H. D. Cavanagh, and J. P. McCulley, “Contrast sensitivity and higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses,” J. Refract. Surg. 24(6), 619–625 (2008).
[PubMed]

Weeber, H. A.

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23(4), 374–384 (2007).
[PubMed]

Werner, J. S.

J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35(7), 1229–1233 (2009).
[CrossRef] [PubMed]

Yamada, A. C.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottós, J. Bottós, L. Morimoto, and W. Nosé, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142(5), 750–756 (2006).
[CrossRef] [PubMed]

Ye, M.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[CrossRef] [PubMed]

Yelda, Y.

T. Tamer, G. Ipek, Y. Yelda, and C. Izzet, “Ocular wavefront analysis and contrast sensitivity in eyes implanted with AcrySof IQ or AcrySof Natural intraocular lenses,” Acta Ophthalmol. (Copenh.) 87, 759–763 (2008).

Zadok, D.

Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
[CrossRef] [PubMed]

Zhang, X.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[CrossRef] [PubMed]

Acta Ophthalmol. (Copenh.) (1)

T. Tamer, G. Ipek, Y. Yelda, and C. Izzet, “Ocular wavefront analysis and contrast sensitivity in eyes implanted with AcrySof IQ or AcrySof Natural intraocular lenses,” Acta Ophthalmol. (Copenh.) 87, 759–763 (2008).

Am. J. Ophthalmol. (2)

Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005).
[CrossRef] [PubMed]

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottós, J. Bottós, L. Morimoto, and W. Nosé, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142(5), 750–756 (2006).
[CrossRef] [PubMed]

Appl. Opt. (2)

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[CrossRef] [PubMed]

G. M. Dai, “Optical surface optimization for the correction of presbyopia,” Appl. Opt. 45(17), 4184–4195 (2006).
[CrossRef] [PubMed]

Arch. Ophthalmol. (1)

L. Wang and D. D. Koch, “Effect of decentration of wavefront-corrected intraocular lenses on the higher-order aberrations of the eye,” Arch. Ophthalmol. 123(9), 1226–1230 (2005).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (5)

G. H. H. Beiko, “Personalized correction of spherical aberration in cataract surgery,” J. Cataract Refract. Surg. 33(8), 1455–1460 (2007).
[CrossRef] [PubMed]

T. Ferrer-Blasco, “Effect of partial and full correction of corneal spherical aberration on visual acuity and contrast sensitivity,” J. Cataract Refract. Surg. 35(5), 949–951 (2009).
[CrossRef] [PubMed]

J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35(7), 1229–1233 (2009).
[CrossRef] [PubMed]

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005).
[CrossRef] [PubMed]

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
[CrossRef]

J. Refract. Surg. (4)

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23(4), 374–384 (2007).
[PubMed]

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002).
[PubMed]

S. T. Awwad, D. Warmerdam, R. W. Bowman, S. Dwarakanathan, H. D. Cavanagh, and J. P. McCulley, “Contrast sensitivity and higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses,” J. Refract. Surg. 24(6), 619–625 (2008).
[PubMed]

L. Cadarso, A. Iglesias, A. Ollero, B. Pita, and R. Montés-Micó, “Postoperative optical aberrations in eyes implanted with AcrySof spherical and aspheric intraocular lenses,” J. Refract. Surg. 24(8), 811–816 (2008).
[PubMed]

J. Vis. (1)

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (1)

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002).
[CrossRef] [PubMed]

Ophthalmology (2)

P. R. Trueb, C. Albach, R. Montés-Micó, and T. Ferrer-Blasco, “Visual acuity and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses,” Ophthalmology 116(5), 890–895 (2009).
[CrossRef] [PubMed]

T. Kohnen, O. K. Klaproth, and J. Bühren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116(9), 1697–1706 (2009).
[CrossRef] [PubMed]

Optom. Vis. Sci. (1)

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
[CrossRef] [PubMed]

Trans. Am. Ophthalmol. Soc. (1)

D. D. Koch and L. Wang, “Custom optimization of intraocular lens asphericity,” Trans. Am. Ophthalmol. Soc. 105, 36–41, discussion 41–42 (2007).

Vision Res. (2)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[CrossRef]

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006).
[CrossRef] [PubMed]

Other (9)

W. Hill, “What intraocular lens should I use in the postkeratorefractive patient?” in Curbside Consultation in Cataract Surgery, D. Chang, T. Kim, and T. Oetting, eds. (Slack, Inc., 2007), pp. 43–47.

L. Thibos, N. Himebaugh, and C. Coe, “Wavefront refraction,” in Borish's Clinical Refraction, W. Benjamin, ed. (Butterworth Heinemann Elsevier, 2006), pp. 765–789.

H. von Helmholtz, Helmholtz's Treatise on Physiological Optics, English translation published in 1924 from the 3rd German edition, published 1909. Translated by J. P. C. Southhall (Optical Society of America, 1924).

I. Ivanoff, Les Aberrations de L'Oeil (Editions de la Revue d'Optique Theorique et Instrumentale, 1953).

R. L. De Valois, and K. K. De Valois, Spatial Vision (Oxford Psychology Series, No. 14), (Oxford University Press, 1988).

M. Jalie, “Form and material of ophthalmic lenses,” in Ophthalmic Lenses & Dispensing (Elsevier Health Sciences, 2003), pp. 27–38.

R. J. Lee, and R. Tahran, “Vision correction for the older adult,” in Rosenbloom & Morgan's Vision and Aging, A. A. Rosenbloom and M. W. Morgan, eds. (Elsevier Health Sciences, 2006), pp. 201–214.

D. Atchison, and G. Smith, “Light and the eye,” in Optics of the Human Eye (Butterworth-Heinemann, 2000), pp. 99–104.

Y. Le Grand, Form and Space Vision, translated by G.G. Heath and M. Millodot. (Indiana University Press, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Defocus aberration coefficient, c2 0, as a function of visible wavelengths. Positive c2 0 values are shaded blue and negative c2 0 values are shaded red.

Fig. 2
Fig. 2

Modulation transfer functions and spherical aberration. A. Theoretical 2-dimensional polychromatic modulation transfer functions (MTFs) for a source at distance (optical infinity), with varying values of overall ocular spherical aberration. B. Theoretical volumes of the MTFs, calculated with limits of 50 lp/mm and 100 lp/mm.

Fig. 3
Fig. 3

Case #1 – Neutral overall spherical aberration indicated by idealistic model. A. Corneal wavefront pattern in Zernike view. B. Volumes of the resultant modulation transfer function (MTF), plotted as a function of residual overall ocular spherical aberration, using an idealistic model with an average focusing wavelength of 550 nm. C. Volumes of MTFs versus overall ocular spherical aberration, using a realistic model with an average focusing wavelength of 575 nm.

Fig. 4
Fig. 4

Case #2 – Positive overall spherical aberration indicated by idealistic model. A. Corneal wavefront pattern in Zernike view. B. Volumes of the resultant modulation transfer function (MTF), plotted as a function of residual overall ocular spherical aberration, using an idealistic model with an average focusing wavelength of 550 nm. C. Volumes of MTFs versus overall ocular spherical aberration, using a realistic model with an average focusing wavelength of 575 nm.

Fig. 5
Fig. 5

Case #3 – Negative overall spherical aberration indicated by idealistic model. A. Corneal wavefront pattern in Zernike view. B. Volumes of the resultant modulation transfer function (MTF), plotted as a function of residual overall ocular spherical aberration, using an idealistic model with an average focusing wavelength of 550 nm. C. Volumes of MTFs versus overall ocular spherical aberration, using a realistic model with an average focusing wavelength of 575 nm.

Fig. 6
Fig. 6

Example wavefront curves. A. A wavefront curve with a myopic (positive) defocus aberration coefficient. B. A wavefront curve with a positive spherical aberration. C. A combined wavefront, with positive defocus aberration and positive spherical aberration.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W ( r , θ ) = n , f c n f Z n f ( r , θ )
C ( λ ) 21.587 + 92.87 λ 134.98 λ 2 + 67.407 λ 3
c 2 0 = C ( λ ) R 2 4 3

Metrics