Abstract

The femtosecond open-aperture Z-scan of standard sample CS2 at 800 and 780 nm is present here by using thinner sample length and an integrating sphere. The open-aperture Z-scan signal is verified to arise mainly from nonlinear scattering, not from two- or three-photon absorption as reported in literature. And the two- and three-photon absorption coefficients of CS2 are negligible. Therefore, around 800 nm the femtosecond open-aperture Z-scan of CS2 cannot be used to calibrate Z-scan measurement system, but the closed-aperture Z-scan is capable.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231(1-6), 431–436 (2004).
    [CrossRef]
  2. R. A. Ganeev, A. I. Ryasnyanskiĭ, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100(1), 108–118 (2006).
    [CrossRef]
  3. B. Gu, W. Ji, and X. Q. Huang, “Analytical expression for femtosecond-pulsed Z scans on instantaneous nonlinearity,” Appl. Opt. 47(9), 1187–1192 (2008).
    [CrossRef] [PubMed]
  4. K. C. Jena, P. B. Bisht, M. M. Shaijumon, and S. Ramaprabhu, “Study of optical nonlinearity of functionalized multi-wall carbon nanotubes by using degenerate four wave mixing and Z-scan techniques,” Opt. Commun. 273(1), 153–158 (2007).
    [CrossRef]
  5. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
    [CrossRef]
  6. J. W. Rabalais, J. M. McDonald, V. Scherr, and S. P. McGlynn, “Electronic spectroscopy of isoelectronic molecules. II. Linear triatomic grouping containing sixteen valence electrons,” Chem. Rev. 71, 73–108 (1971).
    [CrossRef]
  7. http://en.wikipedia.org/wiki/Two_photon_absorption
  8. S. J. Bepko, “Anisotropy of two-photon absorption in GaAs and CdTe,” Phys. Rev. B 12(2), 669–672 (1975).
    [CrossRef]
  9. M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69(2), 133–136 (1999).
    [CrossRef]
  10. A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express 13(20), 7976–7981 (2005).
    [CrossRef] [PubMed]
  11. E. J. Miller, M. S. Malcuit, and R. W. Boyd, “Simultaneous wave-front and polarization conjugation of picosecond optical pulses by stimulated Rayleigh-wing scattering,” Opt. Lett. 15(21), 1188–1190 (1990).
    [CrossRef] [PubMed]
  12. D. Wang, R. Barille, and G. Rivoire, “Influence of propagation of optical pulses on stimulated Rayleigh wing scattering in a Kerr medium,” J. Opt. Soc. Am. B 14(10), 2584–2588 (1997).
    [CrossRef]
  13. D. Wang and G. Rivoire, “Large spectral bandwidth stimulated Rayleigh-wing scattering in CS2,” J. Chem. Phys. 98(12), 9279 (1993).
    [CrossRef]
  14. H. Bitto, A. Ruzicic, and J. R. Huber, “Dynamics of selected rovibronic eigenstates in the V-system of carbondisulfide 12,13CS2,” Chem. Phys. 189(3), 713–724 (1994).
    [CrossRef]
  15. D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
    [CrossRef]
  16. Q. H. Jin, W. Z. Wu, Z. R. Zheng, Y. X. Yan, W. L. Liu, A. H. Li, Y. Yang, and W. Su, “The third-order optical nonlinearity and upconversion luminescence of CdTe quantum dots under femtosecond laser excitation,” J. Nanopart. Res. 11(3), 665–670 (2009).
    [CrossRef]
  17. K. Jamshidi-Ghaleh and N. Mansour, “Nonlinear absorption and optical limiting in Duran glass induced by 800nm femtosecond laser pulses,” J. Phys. D Appl. Phys. 40(2), 366–369 (2007).
    [CrossRef]
  18. K. Jamshidi-Ghaleh, “Intense femtosecond laser pulse interaction with ultra-low expansion glass: nonlinear responses and optical limiting effect,” J. Opt. A, Pure Appl. Opt. 11(1), 015202 (2009).
    [CrossRef]
  19. L. Rodriguez, H. Y. Ahn, and K. D. Belfield, “Femtosecond two-photon absorption measurements based on the accumulative photo-thermal effect and the Rayleigh interferometer,” Opt. Express 17(22), 19617–19628 (2009).
    [CrossRef] [PubMed]
  20. T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739 (1994).
    [CrossRef]
  21. A. Haché and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Appl. Phys. Lett. 77(25), 4089 (2000).
    [CrossRef]
  22. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996) Chpts. 10, 9 & 14.
  23. S. Polyakov, F. Yoshino, and G. Stegeman, “Interplay between self-focusing and high-order multiphoton absorption,” J. Opt. Soc. Am. B 18(12), 1891 (2001).
    [CrossRef]
  24. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, 2003) Chpts. 9 &10.
  25. S. Q. Chen, Z. B. Liu, W. P. Zang, J. G. Tian, W. Y. Zhou, F. Song, and C. P. Zhang, “Study on Z-scan characteristics for a large nonlinear phase shift,” J. Opt. Soc. Am. B 22(9), 1911 (2005).
    [CrossRef]

2009 (4)

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[CrossRef]

Q. H. Jin, W. Z. Wu, Z. R. Zheng, Y. X. Yan, W. L. Liu, A. H. Li, Y. Yang, and W. Su, “The third-order optical nonlinearity and upconversion luminescence of CdTe quantum dots under femtosecond laser excitation,” J. Nanopart. Res. 11(3), 665–670 (2009).
[CrossRef]

K. Jamshidi-Ghaleh, “Intense femtosecond laser pulse interaction with ultra-low expansion glass: nonlinear responses and optical limiting effect,” J. Opt. A, Pure Appl. Opt. 11(1), 015202 (2009).
[CrossRef]

L. Rodriguez, H. Y. Ahn, and K. D. Belfield, “Femtosecond two-photon absorption measurements based on the accumulative photo-thermal effect and the Rayleigh interferometer,” Opt. Express 17(22), 19617–19628 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

K. C. Jena, P. B. Bisht, M. M. Shaijumon, and S. Ramaprabhu, “Study of optical nonlinearity of functionalized multi-wall carbon nanotubes by using degenerate four wave mixing and Z-scan techniques,” Opt. Commun. 273(1), 153–158 (2007).
[CrossRef]

K. Jamshidi-Ghaleh and N. Mansour, “Nonlinear absorption and optical limiting in Duran glass induced by 800nm femtosecond laser pulses,” J. Phys. D Appl. Phys. 40(2), 366–369 (2007).
[CrossRef]

2006 (1)

R. A. Ganeev, A. I. Ryasnyanskiĭ, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100(1), 108–118 (2006).
[CrossRef]

2005 (2)

2004 (1)

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231(1-6), 431–436 (2004).
[CrossRef]

2003 (1)

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

2001 (1)

2000 (1)

A. Haché and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Appl. Phys. Lett. 77(25), 4089 (2000).
[CrossRef]

1999 (1)

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69(2), 133–136 (1999).
[CrossRef]

1997 (1)

1994 (2)

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739 (1994).
[CrossRef]

H. Bitto, A. Ruzicic, and J. R. Huber, “Dynamics of selected rovibronic eigenstates in the V-system of carbondisulfide 12,13CS2,” Chem. Phys. 189(3), 713–724 (1994).
[CrossRef]

1993 (1)

D. Wang and G. Rivoire, “Large spectral bandwidth stimulated Rayleigh-wing scattering in CS2,” J. Chem. Phys. 98(12), 9279 (1993).
[CrossRef]

1990 (1)

1975 (1)

S. J. Bepko, “Anisotropy of two-photon absorption in GaAs and CdTe,” Phys. Rev. B 12(2), 669–672 (1975).
[CrossRef]

1971 (1)

J. W. Rabalais, J. M. McDonald, V. Scherr, and S. P. McGlynn, “Electronic spectroscopy of isoelectronic molecules. II. Linear triatomic grouping containing sixteen valence electrons,” Chem. Rev. 71, 73–108 (1971).
[CrossRef]

Ahn, H. Y.

Baba, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231(1-6), 431–436 (2004).
[CrossRef]

Barille, R.

Belfield, K. D.

Bepko, S. J.

S. J. Bepko, “Anisotropy of two-photon absorption in GaAs and CdTe,” Phys. Rev. B 12(2), 669–672 (1975).
[CrossRef]

Bisht, P. B.

K. C. Jena, P. B. Bisht, M. M. Shaijumon, and S. Ramaprabhu, “Study of optical nonlinearity of functionalized multi-wall carbon nanotubes by using degenerate four wave mixing and Z-scan techniques,” Opt. Commun. 273(1), 153–158 (2007).
[CrossRef]

Bitto, H.

H. Bitto, A. Ruzicic, and J. R. Huber, “Dynamics of selected rovibronic eigenstates in the V-system of carbondisulfide 12,13CS2,” Chem. Phys. 189(3), 713–724 (1994).
[CrossRef]

Bourgeois, M.

A. Haché and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Appl. Phys. Lett. 77(25), 4089 (2000).
[CrossRef]

Boyd, R. W.

Chang, Q.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[CrossRef]

Chaux, R.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Chen, S. Q.

Couris, S.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Falconieri, M.

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69(2), 133–136 (1999).
[CrossRef]

Faucher, O.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyanskiĭ, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100(1), 108–118 (2006).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231(1-6), 431–436 (2004).
[CrossRef]

Gao, Y. C.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[CrossRef]

Gnoli, A.

Gu, B.

Haché, A.

A. Haché and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Appl. Phys. Lett. 77(25), 4089 (2000).
[CrossRef]

Huang, X. Q.

Huber, J. R.

H. Bitto, A. Ruzicic, and J. R. Huber, “Dynamics of selected rovibronic eigenstates in the V-system of carbondisulfide 12,13CS2,” Chem. Phys. 189(3), 713–724 (1994).
[CrossRef]

Ishizawa, N.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231(1-6), 431–436 (2004).
[CrossRef]

Jamshidi-Ghaleh, K.

K. Jamshidi-Ghaleh, “Intense femtosecond laser pulse interaction with ultra-low expansion glass: nonlinear responses and optical limiting effect,” J. Opt. A, Pure Appl. Opt. 11(1), 015202 (2009).
[CrossRef]

K. Jamshidi-Ghaleh and N. Mansour, “Nonlinear absorption and optical limiting in Duran glass induced by 800nm femtosecond laser pulses,” J. Phys. D Appl. Phys. 40(2), 366–369 (2007).
[CrossRef]

Jena, K. C.

K. C. Jena, P. B. Bisht, M. M. Shaijumon, and S. Ramaprabhu, “Study of optical nonlinearity of functionalized multi-wall carbon nanotubes by using degenerate four wave mixing and Z-scan techniques,” Opt. Commun. 273(1), 153–158 (2007).
[CrossRef]

Ji, W.

Jin, Q. H.

Q. H. Jin, W. Z. Wu, Z. R. Zheng, Y. X. Yan, W. L. Liu, A. H. Li, Y. Yang, and W. Su, “The third-order optical nonlinearity and upconversion luminescence of CdTe quantum dots under femtosecond laser excitation,” J. Nanopart. Res. 11(3), 665–670 (2009).
[CrossRef]

Kong, D. G.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[CrossRef]

Koudoumas, E.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Krauss, T. D.

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739 (1994).
[CrossRef]

Kuroda, H.

R. A. Ganeev, A. I. Ryasnyanskiĭ, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100(1), 108–118 (2006).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231(1-6), 431–436 (2004).
[CrossRef]

Lavorel, B.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Li, A. H.

Q. H. Jin, W. Z. Wu, Z. R. Zheng, Y. X. Yan, W. L. Liu, A. H. Li, Y. Yang, and W. Su, “The third-order optical nonlinearity and upconversion luminescence of CdTe quantum dots under femtosecond laser excitation,” J. Nanopart. Res. 11(3), 665–670 (2009).
[CrossRef]

Liu, W. L.

Q. H. Jin, W. Z. Wu, Z. R. Zheng, Y. X. Yan, W. L. Liu, A. H. Li, Y. Yang, and W. Su, “The third-order optical nonlinearity and upconversion luminescence of CdTe quantum dots under femtosecond laser excitation,” J. Nanopart. Res. 11(3), 665–670 (2009).
[CrossRef]

Liu, Z. B.

Malcuit, M. S.

Mansour, N.

K. Jamshidi-Ghaleh and N. Mansour, “Nonlinear absorption and optical limiting in Duran glass induced by 800nm femtosecond laser pulses,” J. Phys. D Appl. Phys. 40(2), 366–369 (2007).
[CrossRef]

McDonald, J. M.

J. W. Rabalais, J. M. McDonald, V. Scherr, and S. P. McGlynn, “Electronic spectroscopy of isoelectronic molecules. II. Linear triatomic grouping containing sixteen valence electrons,” Chem. Rev. 71, 73–108 (1971).
[CrossRef]

McGlynn, S. P.

J. W. Rabalais, J. M. McDonald, V. Scherr, and S. P. McGlynn, “Electronic spectroscopy of isoelectronic molecules. II. Linear triatomic grouping containing sixteen valence electrons,” Chem. Rev. 71, 73–108 (1971).
[CrossRef]

Michaut, X.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Miller, E. J.

Polyakov, S.

Rabalais, J. W.

J. W. Rabalais, J. M. McDonald, V. Scherr, and S. P. McGlynn, “Electronic spectroscopy of isoelectronic molecules. II. Linear triatomic grouping containing sixteen valence electrons,” Chem. Rev. 71, 73–108 (1971).
[CrossRef]

Ramaprabhu, S.

K. C. Jena, P. B. Bisht, M. M. Shaijumon, and S. Ramaprabhu, “Study of optical nonlinearity of functionalized multi-wall carbon nanotubes by using degenerate four wave mixing and Z-scan techniques,” Opt. Commun. 273(1), 153–158 (2007).
[CrossRef]

Razzari, L.

Renard, M.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Righini, M.

Rivoire, G.

Rodriguez, L.

Ruzicic, A.

H. Bitto, A. Ruzicic, and J. R. Huber, “Dynamics of selected rovibronic eigenstates in the V-system of carbondisulfide 12,13CS2,” Chem. Phys. 189(3), 713–724 (1994).
[CrossRef]

Ryasnyanskii, A. I.

R. A. Ganeev, A. I. Ryasnyanskiĭ, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100(1), 108–118 (2006).
[CrossRef]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231(1-6), 431–436 (2004).
[CrossRef]

Sakakibara, S.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231(1-6), 431–436 (2004).
[CrossRef]

Salvetti, G.

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69(2), 133–136 (1999).
[CrossRef]

Scherr, V.

J. W. Rabalais, J. M. McDonald, V. Scherr, and S. P. McGlynn, “Electronic spectroscopy of isoelectronic molecules. II. Linear triatomic grouping containing sixteen valence electrons,” Chem. Rev. 71, 73–108 (1971).
[CrossRef]

Shaijumon, M. M.

K. C. Jena, P. B. Bisht, M. M. Shaijumon, and S. Ramaprabhu, “Study of optical nonlinearity of functionalized multi-wall carbon nanotubes by using degenerate four wave mixing and Z-scan techniques,” Opt. Commun. 273(1), 153–158 (2007).
[CrossRef]

Song, F.

Song, Y. L.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[CrossRef]

Stegeman, G.

Su, W.

Q. H. Jin, W. Z. Wu, Z. R. Zheng, Y. X. Yan, W. L. Liu, A. H. Li, Y. Yang, and W. Su, “The third-order optical nonlinearity and upconversion luminescence of CdTe quantum dots under femtosecond laser excitation,” J. Nanopart. Res. 11(3), 665–670 (2009).
[CrossRef]

Suzuki, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231(1-6), 431–436 (2004).
[CrossRef]

Tian, J. G.

Turu, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231(1-6), 431–436 (2004).
[CrossRef]

Wang, D.

Wang, Y. X.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[CrossRef]

Wise, F. W.

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739 (1994).
[CrossRef]

Wu, W. Z.

Q. H. Jin, W. Z. Wu, Z. R. Zheng, Y. X. Yan, W. L. Liu, A. H. Li, Y. Yang, and W. Su, “The third-order optical nonlinearity and upconversion luminescence of CdTe quantum dots under femtosecond laser excitation,” J. Nanopart. Res. 11(3), 665–670 (2009).
[CrossRef]

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[CrossRef]

Yan, Y. X.

Q. H. Jin, W. Z. Wu, Z. R. Zheng, Y. X. Yan, W. L. Liu, A. H. Li, Y. Yang, and W. Su, “The third-order optical nonlinearity and upconversion luminescence of CdTe quantum dots under femtosecond laser excitation,” J. Nanopart. Res. 11(3), 665–670 (2009).
[CrossRef]

Yang, K.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[CrossRef]

Yang, Y.

Q. H. Jin, W. Z. Wu, Z. R. Zheng, Y. X. Yan, W. L. Liu, A. H. Li, Y. Yang, and W. Su, “The third-order optical nonlinearity and upconversion luminescence of CdTe quantum dots under femtosecond laser excitation,” J. Nanopart. Res. 11(3), 665–670 (2009).
[CrossRef]

Ye, H. A.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[CrossRef]

Yoshino, F.

Zang, W. P.

Zhang, C. P.

Zhang, X. R.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[CrossRef]

Zheng, Z. R.

Q. H. Jin, W. Z. Wu, Z. R. Zheng, Y. X. Yan, W. L. Liu, A. H. Li, Y. Yang, and W. Su, “The third-order optical nonlinearity and upconversion luminescence of CdTe quantum dots under femtosecond laser excitation,” J. Nanopart. Res. 11(3), 665–670 (2009).
[CrossRef]

Zhou, W. Y.

Appl. Opt. (1)

Appl. Phys. B (1)

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69(2), 133–136 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65(14), 1739 (1994).
[CrossRef]

A. Haché and M. Bourgeois, “Ultrafast all-optical switching in a silicon-based photonic crystal,” Appl. Phys. Lett. 77(25), 4089 (2000).
[CrossRef]

Chem. Phys. (1)

H. Bitto, A. Ruzicic, and J. R. Huber, “Dynamics of selected rovibronic eigenstates in the V-system of carbondisulfide 12,13CS2,” Chem. Phys. 189(3), 713–724 (1994).
[CrossRef]

Chem. Phys. Lett. (1)

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003).
[CrossRef]

Chem. Rev. (1)

J. W. Rabalais, J. M. McDonald, V. Scherr, and S. P. McGlynn, “Electronic spectroscopy of isoelectronic molecules. II. Linear triatomic grouping containing sixteen valence electrons,” Chem. Rev. 71, 73–108 (1971).
[CrossRef]

J. Chem. Phys. (1)

D. Wang and G. Rivoire, “Large spectral bandwidth stimulated Rayleigh-wing scattering in CS2,” J. Chem. Phys. 98(12), 9279 (1993).
[CrossRef]

J. Nanopart. Res. (1)

Q. H. Jin, W. Z. Wu, Z. R. Zheng, Y. X. Yan, W. L. Liu, A. H. Li, Y. Yang, and W. Su, “The third-order optical nonlinearity and upconversion luminescence of CdTe quantum dots under femtosecond laser excitation,” J. Nanopart. Res. 11(3), 665–670 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

K. Jamshidi-Ghaleh, “Intense femtosecond laser pulse interaction with ultra-low expansion glass: nonlinear responses and optical limiting effect,” J. Opt. A, Pure Appl. Opt. 11(1), 015202 (2009).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. At. Mol. Opt. Phys. (1)

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. At. Mol. Opt. Phys. 42(6), 065401 (2009).
[CrossRef]

J. Phys. D Appl. Phys. (1)

K. Jamshidi-Ghaleh and N. Mansour, “Nonlinear absorption and optical limiting in Duran glass induced by 800nm femtosecond laser pulses,” J. Phys. D Appl. Phys. 40(2), 366–369 (2007).
[CrossRef]

Opt. Commun. (2)

K. C. Jena, P. B. Bisht, M. M. Shaijumon, and S. Ramaprabhu, “Study of optical nonlinearity of functionalized multi-wall carbon nanotubes by using degenerate four wave mixing and Z-scan techniques,” Opt. Commun. 273(1), 153–158 (2007).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231(1-6), 431–436 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Spectrosc. (1)

R. A. Ganeev, A. I. Ryasnyanskiĭ, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100(1), 108–118 (2006).
[CrossRef]

Phys. Rev. B (1)

S. J. Bepko, “Anisotropy of two-photon absorption in GaAs and CdTe,” Phys. Rev. B 12(2), 669–672 (1975).
[CrossRef]

Other (3)

http://en.wikipedia.org/wiki/Two_photon_absorption

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, 2003) Chpts. 9 &10.

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996) Chpts. 10, 9 & 14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a, b) OA Z-scan traces of CS2 at several intensities for sample length L = 1 mm at 800 nm. (c) Absorption spectrum of CS2. The inset is a zoom view of absorption spectrum from 380 to 420 nm. (d) OA Z-scan traces of CS2 at 800 nm and 183 GW/cm2 for sample length L = 1 mm and 2 mm, respectively.

Fig. 2
Fig. 2

Comparison of spectra at different sample position. Left side: forward transmitted light, Right side: backward scattering light.

Fig. 3
Fig. 3

(a) OA Z-scan traces of CS2 at 780 nm and 115.8 GW/cm2 for sample length L = 1 mm and 2 mm, respectively. (b) CA Z-scan traces of CS2 at 800 nm.

Metrics