Abstract

By multiplexing two OFDM signals with the same channel space and bit rate together in an interleaved mode, a novel optical multiplexing scheme is proposed and experimentally demonstrated. Since the channel space is halved, the spectral efficiency is doubled compared with conventional OFDM. It is proved that the orthogonality between the subcarriers is maintained as long as the data is real. With discrete Fourier transform, the proposed scheme has similar computational complexity as conventional OFDM and single sideband modulation is conveniently achieved. A 10 Gb/s transmission system is set up, and proves the feasibility and efficiency of the scheme experimentally.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. B. Desurvire, “Capacity Demand and Technology Challenges for Lightwave Systems in the Next Two Decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006).
    [CrossRef]
  2. K. Zbigniew, “Multimedia need more bandwidth- May internet collapse?” International Conference on Transparent Optical Networks “Mediterranean Winter” (2007)
  3. K. T. Murata, E. Kimura, K. Yamamoto, D. Matsuoka, H. Shimazu, Y. Kitamura, K. Fukazawa, J. Tanaka, T. Ikeda, and Y. Kurokawa, “A Bandwidth Challenge at Super Computing (SC) Conference: Large-Scale Data Transfer Using 10Gbps Network, ” OFC (2009)
  4. D. Fisher, “Optical Communication Challenges for a Future Internet Design,” OFC (2009)
  5. Y.-K. Huang, D. Qian, R. E. Saperstein, P. N. Ji, N. Cvijetic, L. Xu, and T. Wang, “Dual-polarization 2×2 IFFT/FFT optical signal processing for 100-Gb/s QPSK-PDM all-optical OFDM,”, OFC (2009)
  6. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s Single-Channel Coherent Optical OFDM Transmission With Orthogonal-Band Multiplexing and Subwavelength Bandwidth Access,” J. Lightwave Technol. 28(4), 308–315 (2010).
    [CrossRef]
  7. R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
    [CrossRef] [PubMed]
  8. T. H. Lotz, R. Urbansky, and W. Sauer-Greff, “Iterative forward Error Correction Decoding for Spectral Efficient Optical OFDM Transmission Systems,” in Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SPThA2.
  9. M. Markus, and H. Herbert, “PMD Tolerant Direct-Detection Optical OFDM System,” ECOC (2007)
  10. W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come? [Invited],” J. Opt. Networking 7(3), 234–255 (2008).
    [CrossRef]
  11. J. Zhao, and A. D. Ellis, “A Novel Optical Fast OFDM with Reduced Channel Spacing Equal to Half of the Symbol Rate Per Carrier,” OFC (2010)
  12. A. Ali, J. Leibrich, and W. Rosenkranz, “Spectral Efficiency and Receiver Sensitivity in Direct Detection Optical-OFDM,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMT7.
  13. X. Yi, W. Shieh, and Y. Ma, “Phase Noise Effects on High Spectral Efficiency Coherent Optical OFDM Transmission,” J. Lightwave Technol. 26(10), 1309–1316 (2008).
    [CrossRef]

2010 (2)

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s Single-Channel Coherent Optical OFDM Transmission With Orthogonal-Band Multiplexing and Subwavelength Bandwidth Access,” J. Lightwave Technol. 28(4), 308–315 (2010).
[CrossRef]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

2008 (2)

W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come? [Invited],” J. Opt. Networking 7(3), 234–255 (2008).
[CrossRef]

X. Yi, W. Shieh, and Y. Ma, “Phase Noise Effects on High Spectral Efficiency Coherent Optical OFDM Transmission,” J. Lightwave Technol. 26(10), 1309–1316 (2008).
[CrossRef]

2006 (1)

E. B. Desurvire, “Capacity Demand and Technology Challenges for Lightwave Systems in the Next Two Decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006).
[CrossRef]

Chen, S.

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s Single-Channel Coherent Optical OFDM Transmission With Orthogonal-Band Multiplexing and Subwavelength Bandwidth Access,” J. Lightwave Technol. 28(4), 308–315 (2010).
[CrossRef]

Desurvire, E. B.

E. B. Desurvire, “Capacity Demand and Technology Challenges for Lightwave Systems in the Next Two Decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006).
[CrossRef]

Giacoumidis, E.

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

Giddings, R. P.

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

Hugues-Salas, E.

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

Jin, X. Q.

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

Ma, Y.

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s Single-Channel Coherent Optical OFDM Transmission With Orthogonal-Band Multiplexing and Subwavelength Bandwidth Access,” J. Lightwave Technol. 28(4), 308–315 (2010).
[CrossRef]

W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come? [Invited],” J. Opt. Networking 7(3), 234–255 (2008).
[CrossRef]

X. Yi, W. Shieh, and Y. Ma, “Phase Noise Effects on High Spectral Efficiency Coherent Optical OFDM Transmission,” J. Lightwave Technol. 26(10), 1309–1316 (2008).
[CrossRef]

Shieh, W.

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s Single-Channel Coherent Optical OFDM Transmission With Orthogonal-Band Multiplexing and Subwavelength Bandwidth Access,” J. Lightwave Technol. 28(4), 308–315 (2010).
[CrossRef]

X. Yi, W. Shieh, and Y. Ma, “Phase Noise Effects on High Spectral Efficiency Coherent Optical OFDM Transmission,” J. Lightwave Technol. 26(10), 1309–1316 (2008).
[CrossRef]

W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come? [Invited],” J. Opt. Networking 7(3), 234–255 (2008).
[CrossRef]

Tang, J. M.

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

Tang, Y.

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s Single-Channel Coherent Optical OFDM Transmission With Orthogonal-Band Multiplexing and Subwavelength Bandwidth Access,” J. Lightwave Technol. 28(4), 308–315 (2010).
[CrossRef]

Wei, J. L.

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

Yang, Q.

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s Single-Channel Coherent Optical OFDM Transmission With Orthogonal-Band Multiplexing and Subwavelength Bandwidth Access,” J. Lightwave Technol. 28(4), 308–315 (2010).
[CrossRef]

W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come? [Invited],” J. Opt. Networking 7(3), 234–255 (2008).
[CrossRef]

Yi, X.

X. Yi, W. Shieh, and Y. Ma, “Phase Noise Effects on High Spectral Efficiency Coherent Optical OFDM Transmission,” J. Lightwave Technol. 26(10), 1309–1316 (2008).
[CrossRef]

W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come? [Invited],” J. Opt. Networking 7(3), 234–255 (2008).
[CrossRef]

J. Lightwave Technol. (3)

E. B. Desurvire, “Capacity Demand and Technology Challenges for Lightwave Systems in the Next Two Decades,” J. Lightwave Technol. 24(12), 4697–4710 (2006).
[CrossRef]

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s Single-Channel Coherent Optical OFDM Transmission With Orthogonal-Band Multiplexing and Subwavelength Bandwidth Access,” J. Lightwave Technol. 28(4), 308–315 (2010).
[CrossRef]

X. Yi, W. Shieh, and Y. Ma, “Phase Noise Effects on High Spectral Efficiency Coherent Optical OFDM Transmission,” J. Lightwave Technol. 26(10), 1309–1316 (2008).
[CrossRef]

J. Opt. Networking (1)

W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come? [Invited],” J. Opt. Networking 7(3), 234–255 (2008).
[CrossRef]

Opt. Express (1)

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

Other (8)

T. H. Lotz, R. Urbansky, and W. Sauer-Greff, “Iterative forward Error Correction Decoding for Spectral Efficient Optical OFDM Transmission Systems,” in Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2010), paper SPThA2.

M. Markus, and H. Herbert, “PMD Tolerant Direct-Detection Optical OFDM System,” ECOC (2007)

K. Zbigniew, “Multimedia need more bandwidth- May internet collapse?” International Conference on Transparent Optical Networks “Mediterranean Winter” (2007)

K. T. Murata, E. Kimura, K. Yamamoto, D. Matsuoka, H. Shimazu, Y. Kitamura, K. Fukazawa, J. Tanaka, T. Ikeda, and Y. Kurokawa, “A Bandwidth Challenge at Super Computing (SC) Conference: Large-Scale Data Transfer Using 10Gbps Network, ” OFC (2009)

D. Fisher, “Optical Communication Challenges for a Future Internet Design,” OFC (2009)

Y.-K. Huang, D. Qian, R. E. Saperstein, P. N. Ji, N. Cvijetic, L. Xu, and T. Wang, “Dual-polarization 2×2 IFFT/FFT optical signal processing for 100-Gb/s QPSK-PDM all-optical OFDM,”, OFC (2009)

J. Zhao, and A. D. Ellis, “A Novel Optical Fast OFDM with Reduced Channel Spacing Equal to Half of the Symbol Rate Per Carrier,” OFC (2010)

A. Ali, J. Leibrich, and W. Rosenkranz, “Spectral Efficiency and Receiver Sensitivity in Direct Detection Optical-OFDM,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMT7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Frequency domain description of the OFDM interleaved multiplexing

Fig. 2
Fig. 2

Experiment setup (ASK: Amplitude Shift Keying; ATT: attenuator; AWG: Arbitrary Waveform Generator; BPF: Band Pass Filter; BERT: bit error rate tester; DPO: Digital Phosphor Oscilloscope; EDFA: Erbium-Doped optical Fiber Amplifier; LPF: low pass filter; MZM: Mach-Zehnder Modulator; OFDM: Orthogonal Frequency Division Multiplexing; PD: Photon Detector; PRBS: Pseudo-Random Binary Sequence; SSMF: Standard Single Mode Fiber)

Fig. 3
Fig. 3

Spectral of electrical (a) and optical signals (b)

Fig. 4
Fig. 4

BER curves of received signal

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S ( t ) = k = 0 m 1 a 2 k e j 2 π k T t + e j π 1 T t k = 0 m 1 a 2 k + 1 e j 2 π k T t                   ( 0 k < m , 2 m = n )
S m , n = 1 T 0 T e j 2 π m T t e - j 2 π n T t d t = { 0                                         ( m n ) 1                                           ( m = n )
S ( t ) = k = 0 n 1 a k e j 2 π k 2 T t                     ( 0 k < n )
S m , n = 1 T 0 T e j 2 π m 2 T t ( e j 2 π n 2 T t ) * d t = 1 T 0 T e j 2 π m n 2 T t d t
S m , n = 1 T 0 T e j 2 π m n 2 T t d t = 1                                   ( m = n )
S m , n = 1 T 0 T e j 2 π m n 2 T t d t = {                         0                               ( m n = 2 N ) 2 j π ( m n )             ( m n = 2 N + 1 )
Re ( S m , n ) = Re ( 1 T 0 T e j 2 π m n 2 T t d t ) = { 0                         ( m n ) 1                           ( m = n )
S ( T n p ) = I F F T ( a 2 k , n ) + e j π p n I F F T ( a 2 k + 1 , n )                     ( 0 k < m , 2 m = n )
a p = F F T ( S 2 k , n ) + e j π p n F F T ( S 2 k + 1 , n )                     ( 0 k < m , 2 m = n )

Metrics