Abstract

We observed resonance effects on the transmission of a pump beam in a chaotic microcavity in an optimal free-space optical-pumping configuration. The far-field pattern of cavity transmission was significantly modified when the pump laser was resonant with a scar mode. From the difference between the non-resonant and on-resonance transmission patterns, we obtained the efficiency of the pump coupling into the scar mode to be as high as 45%, which is consistent with the recent excitation spectroscopy results of Yang et al. [Phys. Rev. Lett. 104, 243601 (2010)].

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref] [PubMed]
  2. E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
    [Crossref]
  3. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref] [PubMed]
  4. S. Suzuki, Y. Hatakeyama, Y. Kokubun, and S. T. Chu, “Precise control of wavelength channel spacing of microring resonator add-drop filter array,” J. Lightwave Technol. 20, 745–750 (2002).
    [Crossref]
  5. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [Crossref] [PubMed]
  6. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  7. Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009).
    [Crossref]
  8. A. W. Poon, F. Courvoisier, and R. K. Chang, “Multimode resonances in square-shaped optical microcavities,” Opt. Lett. 26, 632–634 (2001).
    [Crossref]
  9. V. Sandoghdar, F. Treussart, J. Hare, V. Lefévre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
    [Crossref] [PubMed]
  10. S. Lacey, H. Wang, D. H. Foster, and J. U. Nöckel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91,  033902 (2003).
    [Crossref] [PubMed]
  11. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref] [PubMed]
  12. S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers,” Appl. Phys. Lett. 90, 041106 (2007).
    [Crossref]
  13. J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser,” Appl. Phys. Lett. 93, 061101 (2008).
    [Crossref]
  14. M. Hentschel and M. Vojta, “Multiple beam interference in a quadrupolar glass fiber,” Opt. Lett. 26, 1764–1766 (2001).
    [Crossref]
  15. J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).
    [Crossref] [PubMed]
  16. S. Moon, J. Yang, S.-B. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Nondestructive high-resolution soft-boundary profiling based on forward shadow diffraction,” Opt. Express 16, 11007–11020 (2008).
    [Crossref] [PubMed]
  17. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
    [Crossref]
  18. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [Crossref] [PubMed]
  19. S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Universal output directionality of single modes in a deformed microcavity,” Phys. Rev. A. 75, 011802 (2007).
    [Crossref]
  20. C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
    [Crossref]
  21. Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A. 80, 041807 (2009).
    [Crossref]
  22. H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, and A. D. Stone, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).
    [Crossref]
  23. J.-B. Shim, S.-B. Lee, S.-W. Kim, S.-Y. Lee, J. Yang, S. Moon, J.-H. Lee, and K. An, “Uncertainty-limited turnstile transport in deformed microcavities,” Phys. Rev. Lett. 100, 174102 (2008).
    [Crossref] [PubMed]
  24. J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385, 45–47 (1997).
    [Crossref]
  25. J. Yang, S. Moon, S.-B. Lee, S.-W. Kim, J.-B. Shim, H.-W. Lee, J.-H. Lee, and K. An, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
    [Crossref]
  26. S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).
    [Crossref] [PubMed]
  27. E. J. Heller, “Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits,” Phys. Rev. Lett. 53, 1515–1518 (1984).
    [Crossref]

2010 (1)

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).
[Crossref] [PubMed]

2009 (4)

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).
[Crossref] [PubMed]

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009).
[Crossref]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A. 80, 041807 (2009).
[Crossref]

2008 (3)

J.-B. Shim, S.-B. Lee, S.-W. Kim, S.-Y. Lee, J. Yang, S. Moon, J.-H. Lee, and K. An, “Uncertainty-limited turnstile transport in deformed microcavities,” Phys. Rev. Lett. 100, 174102 (2008).
[Crossref] [PubMed]

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser,” Appl. Phys. Lett. 93, 061101 (2008).
[Crossref]

S. Moon, J. Yang, S.-B. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Nondestructive high-resolution soft-boundary profiling based on forward shadow diffraction,” Opt. Express 16, 11007–11020 (2008).
[Crossref] [PubMed]

2007 (4)

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers,” Appl. Phys. Lett. 90, 041106 (2007).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Universal output directionality of single modes in a deformed microcavity,” Phys. Rev. A. 75, 011802 (2007).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

2006 (1)

J. Yang, S. Moon, S.-B. Lee, S.-W. Kim, J.-B. Shim, H.-W. Lee, J.-H. Lee, and K. An, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[Crossref]

2004 (1)

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

S. Lacey, H. Wang, D. H. Foster, and J. U. Nöckel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91,  033902 (2003).
[Crossref] [PubMed]

2002 (2)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

S. Suzuki, Y. Hatakeyama, Y. Kokubun, and S. T. Chu, “Precise control of wavelength channel spacing of microring resonator add-drop filter array,” J. Lightwave Technol. 20, 745–750 (2002).
[Crossref]

2001 (3)

A. W. Poon, F. Courvoisier, and R. K. Chang, “Multimode resonances in square-shaped optical microcavities,” Opt. Lett. 26, 632–634 (2001).
[Crossref]

M. Hentschel and M. Vojta, “Multiple beam interference in a quadrupolar glass fiber,” Opt. Lett. 26, 1764–1766 (2001).
[Crossref]

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

1999 (1)

1997 (2)

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefévre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[Crossref] [PubMed]

1984 (1)

E. J. Heller, “Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits,” Phys. Rev. Lett. 53, 1515–1518 (1984).
[Crossref]

Abram, I.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

An, K.

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).
[Crossref] [PubMed]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).
[Crossref] [PubMed]

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser,” Appl. Phys. Lett. 93, 061101 (2008).
[Crossref]

J.-B. Shim, S.-B. Lee, S.-W. Kim, S.-Y. Lee, J. Yang, S. Moon, J.-H. Lee, and K. An, “Uncertainty-limited turnstile transport in deformed microcavities,” Phys. Rev. Lett. 100, 174102 (2008).
[Crossref] [PubMed]

S. Moon, J. Yang, S.-B. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Nondestructive high-resolution soft-boundary profiling based on forward shadow diffraction,” Opt. Express 16, 11007–11020 (2008).
[Crossref] [PubMed]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Universal output directionality of single modes in a deformed microcavity,” Phys. Rev. A. 75, 011802 (2007).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers,” Appl. Phys. Lett. 90, 041106 (2007).
[Crossref]

J. Yang, S. Moon, S.-B. Lee, S.-W. Kim, J.-B. Shim, H.-W. Lee, J.-H. Lee, and K. An, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Belkin, M. A.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

Birks, T. A.

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

Cao, H.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A. 80, 041807 (2009).
[Crossref]

Capasso, F.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

Chang, R. K.

Cheung, G.

Chu, S. T.

Courvoisier, F.

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Diehl, L.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

Edamura, T.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

Fang, W.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A. 80, 041807 (2009).
[Crossref]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Foster, D. H.

S. Lacey, H. Wang, D. H. Foster, and J. U. Nöckel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91,  033902 (2003).
[Crossref] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Gérard, J. M.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Gorodetsky, M. L.

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefévre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[Crossref] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefévre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[Crossref] [PubMed]

Hatakeyama, Y.

Heller, E. J.

E. J. Heller, “Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits,” Phys. Rev. Lett. 53, 1515–1518 (1984).
[Crossref]

Hentschel, M.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

M. Hentschel and M. Vojta, “Multiple beam interference in a quadrupolar glass fiber,” Opt. Lett. 26, 1764–1766 (2001).
[Crossref]

Ho, S.-T.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A. 80, 041807 (2009).
[Crossref]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Ilchenko, V. S.

Jacques, F.

Kan, H.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

Kim, S.-W.

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).
[Crossref] [PubMed]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).
[Crossref] [PubMed]

J.-B. Shim, S.-B. Lee, S.-W. Kim, S.-Y. Lee, J. Yang, S. Moon, J.-H. Lee, and K. An, “Uncertainty-limited turnstile transport in deformed microcavities,” Phys. Rev. Lett. 100, 174102 (2008).
[Crossref] [PubMed]

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser,” Appl. Phys. Lett. 93, 061101 (2008).
[Crossref]

S. Moon, J. Yang, S.-B. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Nondestructive high-resolution soft-boundary profiling based on forward shadow diffraction,” Opt. Express 16, 11007–11020 (2008).
[Crossref] [PubMed]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers,” Appl. Phys. Lett. 90, 041106 (2007).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Universal output directionality of single modes in a deformed microcavity,” Phys. Rev. A. 75, 011802 (2007).
[Crossref]

J. Yang, S. Moon, S.-B. Lee, S.-W. Kim, J.-B. Shim, H.-W. Lee, J.-H. Lee, and K. An, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Knight, J. C.

Kokubun, Y.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Lacey, S.

S. Lacey, H. Wang, D. H. Foster, and J. U. Nöckel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91,  033902 (2003).
[Crossref] [PubMed]

Lee, H.-W.

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Universal output directionality of single modes in a deformed microcavity,” Phys. Rev. A. 75, 011802 (2007).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers,” Appl. Phys. Lett. 90, 041106 (2007).
[Crossref]

J. Yang, S. Moon, S.-B. Lee, S.-W. Kim, J.-B. Shim, H.-W. Lee, J.-H. Lee, and K. An, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[Crossref]

Lee, J.-H.

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).
[Crossref] [PubMed]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).
[Crossref] [PubMed]

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser,” Appl. Phys. Lett. 93, 061101 (2008).
[Crossref]

J.-B. Shim, S.-B. Lee, S.-W. Kim, S.-Y. Lee, J. Yang, S. Moon, J.-H. Lee, and K. An, “Uncertainty-limited turnstile transport in deformed microcavities,” Phys. Rev. Lett. 100, 174102 (2008).
[Crossref] [PubMed]

S. Moon, J. Yang, S.-B. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Nondestructive high-resolution soft-boundary profiling based on forward shadow diffraction,” Opt. Express 16, 11007–11020 (2008).
[Crossref] [PubMed]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers,” Appl. Phys. Lett. 90, 041106 (2007).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Universal output directionality of single modes in a deformed microcavity,” Phys. Rev. A. 75, 011802 (2007).
[Crossref]

J. Yang, S. Moon, S.-B. Lee, S.-W. Kim, J.-B. Shim, H.-W. Lee, J.-H. Lee, and K. An, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[Crossref]

Lee, S.-B.

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).
[Crossref] [PubMed]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).
[Crossref] [PubMed]

J.-B. Shim, S.-B. Lee, S.-W. Kim, S.-Y. Lee, J. Yang, S. Moon, J.-H. Lee, and K. An, “Uncertainty-limited turnstile transport in deformed microcavities,” Phys. Rev. Lett. 100, 174102 (2008).
[Crossref] [PubMed]

S. Moon, J. Yang, S.-B. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Nondestructive high-resolution soft-boundary profiling based on forward shadow diffraction,” Opt. Express 16, 11007–11020 (2008).
[Crossref] [PubMed]

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser,” Appl. Phys. Lett. 93, 061101 (2008).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers,” Appl. Phys. Lett. 90, 041106 (2007).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Universal output directionality of single modes in a deformed microcavity,” Phys. Rev. A. 75, 011802 (2007).
[Crossref]

J. Yang, S. Moon, S.-B. Lee, S.-W. Kim, J.-B. Shim, H.-W. Lee, J.-H. Lee, and K. An, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[Crossref]

Lee, S.-Y.

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).
[Crossref] [PubMed]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).
[Crossref] [PubMed]

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser,” Appl. Phys. Lett. 93, 061101 (2008).
[Crossref]

J.-B. Shim, S.-B. Lee, S.-W. Kim, S.-Y. Lee, J. Yang, S. Moon, J.-H. Lee, and K. An, “Uncertainty-limited turnstile transport in deformed microcavities,” Phys. Rev. Lett. 100, 174102 (2008).
[Crossref] [PubMed]

Lefévre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefévre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[Crossref] [PubMed]

Liu, B.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A. 80, 041807 (2009).
[Crossref]

Manin, L.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Moon, S.

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).
[Crossref] [PubMed]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).
[Crossref] [PubMed]

S. Moon, J. Yang, S.-B. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Nondestructive high-resolution soft-boundary profiling based on forward shadow diffraction,” Opt. Express 16, 11007–11020 (2008).
[Crossref] [PubMed]

J.-B. Shim, S.-B. Lee, S.-W. Kim, S.-Y. Lee, J. Yang, S. Moon, J.-H. Lee, and K. An, “Uncertainty-limited turnstile transport in deformed microcavities,” Phys. Rev. Lett. 100, 174102 (2008).
[Crossref] [PubMed]

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser,” Appl. Phys. Lett. 93, 061101 (2008).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers,” Appl. Phys. Lett. 90, 041106 (2007).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Universal output directionality of single modes in a deformed microcavity,” Phys. Rev. A. 75, 011802 (2007).
[Crossref]

J. Yang, S. Moon, S.-B. Lee, S.-W. Kim, J.-B. Shim, H.-W. Lee, J.-H. Lee, and K. An, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[Crossref]

Moreau, E.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Nöckel, J. U.

S. Lacey, H. Wang, D. H. Foster, and J. U. Nöckel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91,  033902 (2003).
[Crossref] [PubMed]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385, 45–47 (1997).
[Crossref]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

Park, Y.-S.

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009).
[Crossref]

Pflügl, C.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

Poon, A. W.

Raimond, J.-M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefévre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[Crossref] [PubMed]

Rex, N. B.

Robert, I.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefévre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[Crossref] [PubMed]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Schwefel, H. G. L.

Shim, J.-B.

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).
[Crossref] [PubMed]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).
[Crossref] [PubMed]

J.-B. Shim, S.-B. Lee, S.-W. Kim, S.-Y. Lee, J. Yang, S. Moon, J.-H. Lee, and K. An, “Uncertainty-limited turnstile transport in deformed microcavities,” Phys. Rev. Lett. 100, 174102 (2008).
[Crossref] [PubMed]

S. Moon, J. Yang, S.-B. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Nondestructive high-resolution soft-boundary profiling based on forward shadow diffraction,” Opt. Express 16, 11007–11020 (2008).
[Crossref] [PubMed]

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser,” Appl. Phys. Lett. 93, 061101 (2008).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers,” Appl. Phys. Lett. 90, 041106 (2007).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Universal output directionality of single modes in a deformed microcavity,” Phys. Rev. A. 75, 011802 (2007).
[Crossref]

J. Yang, S. Moon, S.-B. Lee, S.-W. Kim, J.-B. Shim, H.-W. Lee, J.-H. Lee, and K. An, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[Crossref]

Solomon, G. S.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A. 80, 041807 (2009).
[Crossref]

Song, Q.

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A. 80, 041807 (2009).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Stone, A. D.

Suzuki, S.

Thierry-Mieg, V.

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefévre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[Crossref] [PubMed]

Tureci, H. E.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

Vojta, M.

Wang, H.

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009).
[Crossref]

S. Lacey, H. Wang, D. H. Foster, and J. U. Nöckel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91,  033902 (2003).
[Crossref] [PubMed]

Wang, Q. J.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

Wiersig, J.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Yamanishi, M.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

Yan, C.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

Yang, J.

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).
[Crossref] [PubMed]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).
[Crossref] [PubMed]

J.-B. Shim, S.-B. Lee, S.-W. Kim, S.-Y. Lee, J. Yang, S. Moon, J.-H. Lee, and K. An, “Uncertainty-limited turnstile transport in deformed microcavities,” Phys. Rev. Lett. 100, 174102 (2008).
[Crossref] [PubMed]

S. Moon, J. Yang, S.-B. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Nondestructive high-resolution soft-boundary profiling based on forward shadow diffraction,” Opt. Express 16, 11007–11020 (2008).
[Crossref] [PubMed]

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser,” Appl. Phys. Lett. 93, 061101 (2008).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers,” Appl. Phys. Lett. 90, 041106 (2007).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Universal output directionality of single modes in a deformed microcavity,” Phys. Rev. A. 75, 011802 (2007).
[Crossref]

J. Yang, S. Moon, S.-B. Lee, S.-W. Kim, J.-B. Shim, H.-W. Lee, J.-H. Lee, and K. An, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[Crossref]

Yu, N.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

Appl. Phys. Lett. (4)

E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers,” Appl. Phys. Lett. 90, 041106 (2007).
[Crossref]

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Enhanced nonresonant optical pumping based on turnstile transport in a chaotic microcavity laser,” Appl. Phys. Lett. 93, 061101 (2008).
[Crossref]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limacon-shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nat. Phys. (1)

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009).
[Crossref]

Nature (4)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385, 45–47 (1997).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefévre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–1780 (1996).
[Crossref] [PubMed]

Phys. Rev. A. (2)

Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A. 80, 041807 (2009).
[Crossref]

S.-B. Lee, J.-B. Shim, J. Yang, S. Moon, S.-W. Kim, H.-W. Lee, J.-H. Lee, and K. An, “Universal output directionality of single modes in a deformed microcavity,” Phys. Rev. A. 75, 011802 (2007).
[Crossref]

Phys. Rev. Lett. (6)

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S.-W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).
[Crossref] [PubMed]

E. J. Heller, “Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits,” Phys. Rev. Lett. 53, 1515–1518 (1984).
[Crossref]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref] [PubMed]

J.-B. Shim, S.-B. Lee, S.-W. Kim, S.-Y. Lee, J. Yang, S. Moon, J.-H. Lee, and K. An, “Uncertainty-limited turnstile transport in deformed microcavities,” Phys. Rev. Lett. 100, 174102 (2008).
[Crossref] [PubMed]

S. Lacey, H. Wang, D. H. Foster, and J. U. Nöckel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91,  033902 (2003).
[Crossref] [PubMed]

J. Yang, S.-B. Lee, J.-B. Shim, S. Moon, S.-Y. Lee, S.-W. Kim, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104, 243601 (2010).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

J. Yang, S. Moon, S.-B. Lee, S.-W. Kim, J.-B. Shim, H.-W. Lee, J.-H. Lee, and K. An, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[Crossref]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) For optimal non-resonant pumping configuration (see the text for details), pump transmission occurs at two major angles denoted by f′ and d′ (red arrows). (b) For f′ angle, calculated transmission spectrum shows periodic modulations. (c) Calculated far-field emission patterns (blue dashed curve) of high-Q modes, when only the counterclockwise direction is considered, show four dominant peaks marked by d, f′, d′ and f, corresponding to four blue arrows in (a). The pump transmission of (a), on the other hand, has only two major peaks at d′ and f′ (red solid curve).

Fig. 2
Fig. 2

(a) Phase space (Poincaré surface of section) of our quadru-octupole microcavity with η = 0.19 in Birkhoff’s coordinates (inset), in which a ray hit the cavity boundary at polar angle ϕ with an incident angle χ. The stable (blue) and unstable (red) manifolds of the unstable period-4 orbit with fixed points Fn(n = 1, 2, 3, 4) form a complex tangled structure. (b) A pump beam initially prepared in a red-colored region follows chaotic transport processes in the numbered and color-coded sequence, and then escapes the cavity at lobes d′ and f′.

Fig. 3
Fig. 3

(a) Cavity-modified fluorescence spectrum. (b) Pump-transmission spectrum at θ = 45° (at d). Green curve is a fit while the red curve indicates the interference modulations in the background. (c) Spectrum after removing the background modulations (red curve) of (b). Blue curves are fits for resonance peaks while the orange curve is the sum of them. (d) and (e) are the counter parts for the pump-transmission spectrum at θ = 60° (at f′).

Fig. 4
Fig. 4

(a) Non-resonant pump-transmission pattern Pnon (red curve) and the far-field emission pattern P5 of the l = 5 mode (blue curve). (b) On-resonant pump-transmission pattern Pres (black curve) observed at the resonance wavelength of l = 5 mode marked by a red arrow in Fig. 3(a) and its fit (red curve) given by 0.55Pnon + 0.45P5.

Metrics