Abstract

We present tailoring of three dimensional light fields which act as light moulds for elaborate particle micro structures of variable shapes. Stereo microscopy is used for visualization of the 3D particle assemblies. The powerful method is demonstrated for the class of propagation invariant beams, where we introduce the use of Mathieu beams as light moulds with non-rotationally-symmetric structure. They offer multifarious field distributions and facilitate the creation of versatile particle structures. This general technique may find its application in micro fluidics, chemistry, biology, and medicine, to create highly efficient mixing tools, for hierarchical supramolecular organization or in 3D tissue engineering.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: “non-diffracting” beams,” Laser Photon. Rev. 4, 529–547 (2010).
    [Crossref]
  2. J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallo-graphic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater. 22, 356–360 (2010).
    [Crossref] [PubMed]
  3. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
    [Crossref]
  4. T. Čižmár, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
    [Crossref]
  5. M. Woerdemann, K. Berghoff, and C. Denz, “Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation.” Opt. Express 18, 22348–22357 (2010).
    [Crossref] [PubMed]
  6. M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. D. Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. 22, 4176–4179 (2010).
    [Crossref] [PubMed]
  7. D. C. Benito, D. M. Carberry, S. H. Simpson, G. M. Gibson, M. J. Padgett, J. G. Rarity, M. J. Miles, and S. Hanna, “Constructing 3d crystal templates for photonic band gap materials using holographic optical tweezers,” Opt. Express 16, 13005–13015 (2008).
    [Crossref] [PubMed]
  8. M. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
    [Crossref] [PubMed]
  9. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12, 5475–5480 (2004).
    [Crossref] [PubMed]
  10. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
    [Crossref] [PubMed]
  11. J. Gutiérrez-Vega and M. Bandres, “Helmholtz-gauss waves,” J. Opt. Soc. Am. A 22, 289–298 (2005).
    [Crossref]
  12. J. Gutiérrez-Vega, R. Rodríguez-Dagnino, M. Meneses-Nava, and S. Chávez-Cerda, “Mathieu functions, a visual approach,” Am. J. Phys. 71, 233–242 (2003).
    [Crossref]
  13. C. Lopez-Mariscal, J. Gutiérrez-Vega, G. Milne, and K. Dholakia, “Orbital angular momentum transfer in helical mathieu beams,” Opt. Express 14, 4182–4187 (2006).
    [Crossref] [PubMed]
  14. S. Chávez-Cerda, M. Padgett, I. Allison, G. New, J. Gutiérrez-Vega, A. O’Neil, I. MacVicar, and J. Courtial, “Holographic generation and orbital angular momentum of high-order mathieu beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S52–S57 (2002).
    [Crossref]
  15. L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun. 281, 1217–1221 (2008).
    [Crossref]
  16. T. Čižmár, V. Kollarova, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
    [Crossref] [PubMed]
  17. R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: Control of trap shape,” Opt. Express 18, 11785–11790 (2010).
    [Crossref] [PubMed]
  18. D. Bruhwiler and G. Calzaferri, “Molecular sieves as host materials for supramolecular organization,” Micropor. Mesopor. Mater. 72, 1–23 (2004).
    [Crossref]
  19. A. T. O’Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Communications 185, 139–143 (2000).
    [Crossref]
  20. F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3d translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3 (2010).
    [Crossref]
  21. S. H. Simpson and S. Hanna, “Holographic optical trapping of microrods and nanowires,” J. Opt. Soc. Am. A 27, 1255–1264 (2010).
    [Crossref]

2010 (9)

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: “non-diffracting” beams,” Laser Photon. Rev. 4, 529–547 (2010).
[Crossref]

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallo-graphic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater. 22, 356–360 (2010).
[Crossref] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

T. Čižmár, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
[Crossref]

M. Woerdemann, K. Berghoff, and C. Denz, “Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation.” Opt. Express 18, 22348–22357 (2010).
[Crossref] [PubMed]

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. D. Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. 22, 4176–4179 (2010).
[Crossref] [PubMed]

R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: Control of trap shape,” Opt. Express 18, 11785–11790 (2010).
[Crossref] [PubMed]

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3d translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3 (2010).
[Crossref]

S. H. Simpson and S. Hanna, “Holographic optical trapping of microrods and nanowires,” J. Opt. Soc. Am. A 27, 1255–1264 (2010).
[Crossref]

2008 (3)

2006 (1)

2005 (1)

2004 (2)

2003 (1)

J. Gutiérrez-Vega, R. Rodríguez-Dagnino, M. Meneses-Nava, and S. Chávez-Cerda, “Mathieu functions, a visual approach,” Am. J. Phys. 71, 233–242 (2003).
[Crossref]

2002 (3)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

S. Chávez-Cerda, M. Padgett, I. Allison, G. New, J. Gutiérrez-Vega, A. O’Neil, I. MacVicar, and J. Courtial, “Holographic generation and orbital angular momentum of high-order mathieu beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S52–S57 (2002).
[Crossref]

M. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

2000 (1)

A. T. O’Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Communications 185, 139–143 (2000).
[Crossref]

Allison, I.

S. Chávez-Cerda, M. Padgett, I. Allison, G. New, J. Gutiérrez-Vega, A. O’Neil, I. MacVicar, and J. Courtial, “Holographic generation and orbital angular momentum of high-order mathieu beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S52–S57 (2002).
[Crossref]

Andrews, D. L.

T. Čižmár, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
[Crossref]

Arlt, J.

M. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

Bandres, M.

Benito, D. C.

Berghoff, K.

Boguslawski, M.

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallo-graphic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater. 22, 356–360 (2010).
[Crossref] [PubMed]

Bouchal, Z.

Bowman, R.

Bruhwiler, D.

D. Bruhwiler and G. Calzaferri, “Molecular sieves as host materials for supramolecular organization,” Micropor. Mesopor. Mater. 72, 1–23 (2004).
[Crossref]

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Calzaferri, G.

D. Bruhwiler and G. Calzaferri, “Molecular sieves as host materials for supramolecular organization,” Micropor. Mesopor. Mater. 72, 1–23 (2004).
[Crossref]

Carberry, D. M.

Chávez-Cerda, S.

J. Gutiérrez-Vega, R. Rodríguez-Dagnino, M. Meneses-Nava, and S. Chávez-Cerda, “Mathieu functions, a visual approach,” Am. J. Phys. 71, 233–242 (2003).
[Crossref]

S. Chávez-Cerda, M. Padgett, I. Allison, G. New, J. Gutiérrez-Vega, A. O’Neil, I. MacVicar, and J. Courtial, “Holographic generation and orbital angular momentum of high-order mathieu beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S52–S57 (2002).
[Crossref]

Cižmár, T.

T. Čižmár, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
[Crossref]

T. Čižmár, V. Kollarova, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
[Crossref] [PubMed]

Cola, L. D.

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. D. Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. 22, 4176–4179 (2010).
[Crossref] [PubMed]

Cooper, J.

Courtial, J.

L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun. 281, 1217–1221 (2008).
[Crossref]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12, 5475–5480 (2004).
[Crossref] [PubMed]

S. Chávez-Cerda, M. Padgett, I. Allison, G. New, J. Gutiérrez-Vega, A. O’Neil, I. MacVicar, and J. Courtial, “Holographic generation and orbital angular momentum of high-order mathieu beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S52–S57 (2002).
[Crossref]

Denz, C.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3d translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3 (2010).
[Crossref]

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. D. Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. 22, 4176–4179 (2010).
[Crossref] [PubMed]

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallo-graphic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater. 22, 356–360 (2010).
[Crossref] [PubMed]

M. Woerdemann, K. Berghoff, and C. Denz, “Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation.” Opt. Express 18, 22348–22357 (2010).
[Crossref] [PubMed]

Devaux, A.

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. D. Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. 22, 4176–4179 (2010).
[Crossref] [PubMed]

Dholakia, K.

T. Čižmár, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
[Crossref]

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: “non-diffracting” beams,” Laser Photon. Rev. 4, 529–547 (2010).
[Crossref]

T. Čižmár, V. Kollarova, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
[Crossref] [PubMed]

C. Lopez-Mariscal, J. Gutiérrez-Vega, G. Milne, and K. Dholakia, “Orbital angular momentum transfer in helical mathieu beams,” Opt. Express 14, 4182–4187 (2006).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

M. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

Gibson, G.

Gibson, G. M.

Gläsener, S.

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. D. Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. 22, 4176–4179 (2010).
[Crossref] [PubMed]

Gunn-Moore, F.

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: “non-diffracting” beams,” Laser Photon. Rev. 4, 529–547 (2010).
[Crossref]

T. Čižmár, V. Kollarova, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
[Crossref] [PubMed]

Gutiérrez-Vega, J.

C. Lopez-Mariscal, J. Gutiérrez-Vega, G. Milne, and K. Dholakia, “Orbital angular momentum transfer in helical mathieu beams,” Opt. Express 14, 4182–4187 (2006).
[Crossref] [PubMed]

J. Gutiérrez-Vega and M. Bandres, “Helmholtz-gauss waves,” J. Opt. Soc. Am. A 22, 289–298 (2005).
[Crossref]

J. Gutiérrez-Vega, R. Rodríguez-Dagnino, M. Meneses-Nava, and S. Chávez-Cerda, “Mathieu functions, a visual approach,” Am. J. Phys. 71, 233–242 (2003).
[Crossref]

S. Chávez-Cerda, M. Padgett, I. Allison, G. New, J. Gutiérrez-Vega, A. O’Neil, I. MacVicar, and J. Courtial, “Holographic generation and orbital angular momentum of high-order mathieu beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S52–S57 (2002).
[Crossref]

Hanna, S.

Hörner, F.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3d translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3 (2010).
[Crossref]

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. D. Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. 22, 4176–4179 (2010).
[Crossref] [PubMed]

Jordan, P.

Joseph, J.

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallo-graphic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater. 22, 356–360 (2010).
[Crossref] [PubMed]

Kollarova, V.

Laczik, Z.

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Lopez-Mariscal, C.

MacDonald, M.

M. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

MacVicar, I.

S. Chávez-Cerda, M. Padgett, I. Allison, G. New, J. Gutiérrez-Vega, A. O’Neil, I. MacVicar, and J. Courtial, “Holographic generation and orbital angular momentum of high-order mathieu beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S52–S57 (2002).
[Crossref]

Maier, B.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3d translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3 (2010).
[Crossref]

Mazilu, M.

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: “non-diffracting” beams,” Laser Photon. Rev. 4, 529–547 (2010).
[Crossref]

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

Meneses-Nava, M.

J. Gutiérrez-Vega, R. Rodríguez-Dagnino, M. Meneses-Nava, and S. Chávez-Cerda, “Mathieu functions, a visual approach,” Am. J. Phys. 71, 233–242 (2003).
[Crossref]

Miles, M. J.

Milne, G.

Müller, S.

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3d translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3 (2010).
[Crossref]

New, G.

S. Chávez-Cerda, M. Padgett, I. Allison, G. New, J. Gutiérrez-Vega, A. O’Neil, I. MacVicar, and J. Courtial, “Holographic generation and orbital angular momentum of high-order mathieu beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S52–S57 (2002).
[Crossref]

O’Neil, A.

S. Chávez-Cerda, M. Padgett, I. Allison, G. New, J. Gutiérrez-Vega, A. O’Neil, I. MacVicar, and J. Courtial, “Holographic generation and orbital angular momentum of high-order mathieu beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S52–S57 (2002).
[Crossref]

O’Neil, A. T.

A. T. O’Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Communications 185, 139–143 (2000).
[Crossref]

Padgett, M.

Padgett, M. J.

D. C. Benito, D. M. Carberry, S. H. Simpson, G. M. Gibson, M. J. Padgett, J. G. Rarity, M. J. Miles, and S. Hanna, “Constructing 3d crystal templates for photonic band gap materials using holographic optical tweezers,” Opt. Express 16, 13005–13015 (2008).
[Crossref] [PubMed]

A. T. O’Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Communications 185, 139–143 (2000).
[Crossref]

Paterson, L.

M. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

Rarity, J. G.

Rodríguez-Dagnino, R.

J. Gutiérrez-Vega, R. Rodríguez-Dagnino, M. Meneses-Nava, and S. Chávez-Cerda, “Mathieu functions, a visual approach,” Am. J. Phys. 71, 233–242 (2003).
[Crossref]

Romero, L. C. D.

T. Čižmár, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
[Crossref]

Rose, P.

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallo-graphic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater. 22, 356–360 (2010).
[Crossref] [PubMed]

Sibbett, W.

T. Čižmár, V. Kollarova, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
[Crossref] [PubMed]

M. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

Simpson, S. H.

Sinclair, G.

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Stevenson, D. J.

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: “non-diffracting” beams,” Laser Photon. Rev. 4, 529–547 (2010).
[Crossref]

Thiel, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Thomson, L. C.

L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun. 281, 1217–1221 (2008).
[Crossref]

Tsampoula, X.

Volke-Sepulveda, K.

M. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

von Freymann, G.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Wegener, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Woerdemann, M.

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. D. Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. 22, 4176–4179 (2010).
[Crossref] [PubMed]

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3d translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3 (2010).
[Crossref]

M. Woerdemann, K. Berghoff, and C. Denz, “Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation.” Opt. Express 18, 22348–22357 (2010).
[Crossref] [PubMed]

Xavier, J.

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallo-graphic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater. 22, 356–360 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Adv. Mater. (2)

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallo-graphic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater. 22, 356–360 (2010).
[Crossref] [PubMed]

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. D. Cola, and C. Denz, “Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers,” Adv. Mater. 22, 4176–4179 (2010).
[Crossref] [PubMed]

Am. J. Phys. (1)

J. Gutiérrez-Vega, R. Rodríguez-Dagnino, M. Meneses-Nava, and S. Chávez-Cerda, “Mathieu functions, a visual approach,” Am. J. Phys. 71, 233–242 (2003).
[Crossref]

J. Biophoton. (1)

F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, “Full 3d translational and rotational optical control of multiple rod-shaped bacteria,” J. Biophoton. 3 (2010).
[Crossref]

J. Opt. B: Quantum Semiclass. Opt. (1)

S. Chávez-Cerda, M. Padgett, I. Allison, G. New, J. Gutiérrez-Vega, A. O’Neil, I. MacVicar, and J. Courtial, “Holographic generation and orbital angular momentum of high-order mathieu beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S52–S57 (2002).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. B: At. Mol. Opt. Phys. (1)

T. Čižmár, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
[Crossref]

Laser Photon. Rev. (1)

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: “non-diffracting” beams,” Laser Photon. Rev. 4, 529–547 (2010).
[Crossref]

Micropor. Mesopor. Mater. (1)

D. Bruhwiler and G. Calzaferri, “Molecular sieves as host materials for supramolecular organization,” Micropor. Mesopor. Mater. 72, 1–23 (2004).
[Crossref]

Nature (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun. 281, 1217–1221 (2008).
[Crossref]

Opt. Communications (1)

A. T. O’Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Communications 185, 139–143 (2000).
[Crossref]

Opt. Express (6)

Science (1)

M. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[Crossref] [PubMed]

Supplementary Material (1)

» Media 1: MPG (2182 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Intensity distributions of even Mathieu beams (ellipticity parameter q = 27). Numerical calculations (upper rows) and experimental measurements with the optical setup described in section 3 (lower rows). All images are normalized to maximum intensity value and false colors are used to increase visibility.

Fig. 2
Fig. 2

Intensity distributions of a selection of odd (a) and helical (b) Mathieu beams (numerical calculations, ellipticity parameter q = 27).

Fig. 3
Fig. 3

Generation of optical light moulds: Light field tailoring setup for propagation invariant beams in stereoscopic tweezers.

Fig. 4
Fig. 4

Comparison between Mathieu beam (even, m = 4) and Gaussian beam: xy- (left), xz- (middle) and yz-sections (right). Distance in z-direction ≈ 11 μm; step size Δz ≈ 110 nm.

Fig. 5
Fig. 5

Optical light mould characterization and material structuring. (a,b) Probe positions within the optical light mould of an m = 4 Mathieu beam. (c) Stereoscopic images of moulded particles (schematic + experiment) in an m = 7 Mathieu beam. (d) Transversal intensity distribution of the used Mathieu beam (m = 7). (e) Trapping configuration of 2 stacks of particles within the 3D intensity distribution.

Fig. 6
Fig. 6

3D arrangements of elongated particles. (a) Mathieu beam m = 4 (experiment). (b) Trapping configuration of 2 stacked particles within 3D intensity distribution. (c) Particles orientation within transversal intensity distribution. (d) Rotating hologram. (e) Rotating Mathieu beam. (f) Time series of rotating 3D particle structure (stereoscopic)( Media 1).(g) Rotation of moulded particles.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d 2 ω d z 2 + ( a 2 q cos ( 2 z ) ) ω = 0
M m e ( η , ξ , q ) = C m Je m ( ξ , q ) ce m ( η , q ) , m = 0 , 1 , 2 , 3
M m o ( η , ξ , q ) = S m Jo m ( ξ , q ) se m ( η , q ) , m = 1 , 2 , 3

Metrics