Abstract

CO2 laser is an interesting tool to repair defects on silica optics. We studied UV nanosecond laser-induced damage in fused silica after CO2 laser heating. The localization of damage sites and the laser damage threshold are closely related to stress area in silica induced by heating. By applying a suitable second laser heating, we managed to eliminate the debris issued from redeposited silica and to modify the stress area. As a consequence, a significant increase of laser resistance has been observed. This process offers the possibility to improve damage repairing sufficiently to extend the lifetime of the silica components.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21(18), 3249–3255 (1982).
    [CrossRef] [PubMed]
  2. J. Jiao and X. Wang, “Cutting glass substrates with dual-laser beams,” Opt. Laser Eng. , 860 (2008).
  3. R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2 laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34 (2002).
    [CrossRef]
  4. K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45(1), 162–171 (2006).
    [CrossRef] [PubMed]
  5. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006).
    [CrossRef] [PubMed]
  6. R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
    [CrossRef]
  7. M. A. Stevens-Kalceff and J. Wong, “Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser,” J. Appl. Phys. 97(11), 113519 (2005).
    [CrossRef]
  8. S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J.-L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255(10), 5532–5536 (2009).
    [CrossRef]
  9. S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606 (2010).
    [CrossRef]
  10. I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of Laser Damage Growth in Fused Silica with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 5991, 59910C (2005).
    [CrossRef]
  11. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
    [CrossRef]
  12. M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
    [CrossRef]
  13. M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a Process Model for CO2 Laser Mitigation of Damage Growth in Fused Silica,” Proc. SPIE 5273, 145–154 (2004).
    [CrossRef]
  14. L. Gallais, P. Cormont, and J.-L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express 17(26), 23488–23501 (2009).
    [CrossRef]
  15. I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 6261, 62612A (2006).
    [CrossRef]
  16. L. Lamaignère, M. Balas, R. Couchinoux, T. Donval, J. C. Poncetta, S. Reyné, B. Bertussi, and H. Bercegol, “Parametric study of laser-induced surface damage density measurements: Toward reproducibility,” J. Appl. Phys. 107(2), 023105 (2010).
    [CrossRef]
  17. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
    [CrossRef] [PubMed]
  18. M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
    [CrossRef]
  19. M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica,” Proc. SPIE 6720, 67200A (2007).
    [CrossRef]
  20. S. Mainguy, B. Le Garrec, and M. Josse, “Downstream impact of flaws on the LIL/LMJ laser lines,” Proc. SPIE 5991, 599105 (2005).
    [CrossRef]
  21. H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
    [CrossRef]
  22. J. Zarzyski, “Les verres et l'état vitreux,” Masson (1982).
  23. See http://hpfs@corning.com/ for #7980 product specification.
  24. L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
    [CrossRef]

2010 (2)

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606 (2010).
[CrossRef]

L. Lamaignère, M. Balas, R. Couchinoux, T. Donval, J. C. Poncetta, S. Reyné, B. Bertussi, and H. Bercegol, “Parametric study of laser-induced surface damage density measurements: Toward reproducibility,” J. Appl. Phys. 107(2), 023105 (2010).
[CrossRef]

2009 (4)

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[CrossRef] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J.-L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255(10), 5532–5536 (2009).
[CrossRef]

L. Gallais, P. Cormont, and J.-L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express 17(26), 23488–23501 (2009).
[CrossRef]

2008 (1)

J. Jiao and X. Wang, “Cutting glass substrates with dual-laser beams,” Opt. Laser Eng. , 860 (2008).

2007 (3)

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[CrossRef]

2006 (3)

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45(1), 162–171 (2006).
[CrossRef] [PubMed]

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006).
[CrossRef] [PubMed]

2005 (3)

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of Laser Damage Growth in Fused Silica with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

M. A. Stevens-Kalceff and J. Wong, “Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser,” J. Appl. Phys. 97(11), 113519 (2005).
[CrossRef]

S. Mainguy, B. Le Garrec, and M. Josse, “Downstream impact of flaws on the LIL/LMJ laser lines,” Proc. SPIE 5991, 599105 (2005).
[CrossRef]

2004 (1)

M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a Process Model for CO2 Laser Mitigation of Damage Growth in Fused Silica,” Proc. SPIE 5273, 145–154 (2004).
[CrossRef]

2003 (1)

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
[CrossRef]

2002 (3)

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2 laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34 (2002).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

1982 (1)

P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21(18), 3249–3255 (1982).
[CrossRef] [PubMed]

Adams, J. J.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Baker, H. J.

K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45(1), 162–171 (2006).
[CrossRef] [PubMed]

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006).
[CrossRef] [PubMed]

Balas, M.

L. Lamaignère, M. Balas, R. Couchinoux, T. Donval, J. C. Poncetta, S. Reyné, B. Bertussi, and H. Bercegol, “Parametric study of laser-induced surface damage density measurements: Toward reproducibility,” J. Appl. Phys. 107(2), 023105 (2010).
[CrossRef]

Bass, I. L.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of Laser Damage Growth in Fused Silica with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

Bercegol, H.

L. Lamaignère, M. Balas, R. Couchinoux, T. Donval, J. C. Poncetta, S. Reyné, B. Bertussi, and H. Bercegol, “Parametric study of laser-induced surface damage density measurements: Toward reproducibility,” J. Appl. Phys. 107(2), 023105 (2010).
[CrossRef]

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[CrossRef]

Bertussi, B.

L. Lamaignère, M. Balas, R. Couchinoux, T. Donval, J. C. Poncetta, S. Reyné, B. Bertussi, and H. Bercegol, “Parametric study of laser-induced surface damage density measurements: Toward reproducibility,” J. Appl. Phys. 107(2), 023105 (2010).
[CrossRef]

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[CrossRef] [PubMed]

Boley, C. D.

M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a Process Model for CO2 Laser Mitigation of Damage Growth in Fused Silica,” Proc. SPIE 5273, 145–154 (2004).
[CrossRef]

Brusasco, R. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2 laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Bude, J. D.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Burnham, A. K.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Butler, J. A.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2 laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34 (2002).
[CrossRef]

Carr, C. W.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Carr, J. W.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Commandré, M.

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J.-L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255(10), 5532–5536 (2009).
[CrossRef]

Cooke, D.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606 (2010).
[CrossRef]

Cormont, P.

L. Gallais, P. Cormont, and J.-L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express 17(26), 23488–23501 (2009).
[CrossRef]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J.-L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255(10), 5532–5536 (2009).
[CrossRef]

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[CrossRef] [PubMed]

Couchinoux, R.

L. Lamaignère, M. Balas, R. Couchinoux, T. Donval, J. C. Poncetta, S. Reyné, B. Bertussi, and H. Bercegol, “Parametric study of laser-induced surface damage density measurements: Toward reproducibility,” J. Appl. Phys. 107(2), 023105 (2010).
[CrossRef]

Courchinoux, R.

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J.-L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255(10), 5532–5536 (2009).
[CrossRef]

Donohue, E. E.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Donval, T.

L. Lamaignère, M. Balas, R. Couchinoux, T. Donval, J. C. Poncetta, S. Reyné, B. Bertussi, and H. Bercegol, “Parametric study of laser-induced surface damage density measurements: Toward reproducibility,” J. Appl. Phys. 107(2), 023105 (2010).
[CrossRef]

Draggoo, V. G.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606 (2010).
[CrossRef]

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

Elhadj, S.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606 (2010).
[CrossRef]

Feit, M. D.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a Process Model for CO2 Laser Mitigation of Damage Growth in Fused Silica,” Proc. SPIE 5273, 145–154 (2004).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Gallais, L.

L. Gallais, P. Cormont, and J.-L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express 17(26), 23488–23501 (2009).
[CrossRef]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J.-L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255(10), 5532–5536 (2009).
[CrossRef]

Grua, P.

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[CrossRef]

Grundler, W.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Guss, G. M.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606 (2010).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of Laser Damage Growth in Fused Silica with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

Hackel, L. A.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Hackel, R. P.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of Laser Damage Growth in Fused Silica with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

Hall, D. R.

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006).
[CrossRef] [PubMed]

K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45(1), 162–171 (2006).
[CrossRef] [PubMed]

Hébert, D.

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[CrossRef]

Hill, R. M.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Hollingsworth, W. G.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Hrubesh, L. W.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

Jarboe, J. A.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Jiao, J.

J. Jiao and X. Wang, “Cutting glass substrates with dual-laser beams,” Opt. Laser Eng. , 860 (2008).

Josse, M.

S. Mainguy, B. Le Garrec, and M. Josse, “Downstream impact of flaws on the LIL/LMJ laser lines,” Proc. SPIE 5991, 599105 (2005).
[CrossRef]

Key, M. H.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Kozlowski, M. R.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Lamaignère, L.

L. Lamaignère, M. Balas, R. Couchinoux, T. Donval, J. C. Poncetta, S. Reyné, B. Bertussi, and H. Bercegol, “Parametric study of laser-induced surface damage density measurements: Toward reproducibility,” J. Appl. Phys. 107(2), 023105 (2010).
[CrossRef]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J.-L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255(10), 5532–5536 (2009).
[CrossRef]

Laurence, T. A.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Le Garrec, B.

S. Mainguy, B. Le Garrec, and M. Josse, “Downstream impact of flaws on the LIL/LMJ laser lines,” Proc. SPIE 5991, 599105 (2005).
[CrossRef]

Legros, P.

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[CrossRef] [PubMed]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J.-L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255(10), 5532–5536 (2009).
[CrossRef]

Lowdermilk, W. H.

P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21(18), 3249–3255 (1982).
[CrossRef] [PubMed]

Mainguy, S.

S. Mainguy, B. Le Garrec, and M. Josse, “Downstream impact of flaws on the LIL/LMJ laser lines,” Proc. SPIE 5991, 599105 (2005).
[CrossRef]

Maricle, S. M.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2 laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34 (2002).
[CrossRef]

Matthews, M. J.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606 (2010).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Mendez, E.

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006).
[CrossRef] [PubMed]

Milam, D.

P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21(18), 3249–3255 (1982).
[CrossRef] [PubMed]

Miller, P. E.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Molander, W. A.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Morreeuw, J. P.

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[CrossRef]

Norton, M. A.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Nowak, K. M.

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006).
[CrossRef] [PubMed]

K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45(1), 162–171 (2006).
[CrossRef] [PubMed]

Palmier, S.

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J.-L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255(10), 5532–5536 (2009).
[CrossRef]

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[CrossRef] [PubMed]

Penetrante, B. M.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2 laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34 (2002).
[CrossRef]

Peterson, J. E.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2 laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34 (2002).
[CrossRef]

Poncetta, J. C.

L. Lamaignère, M. Balas, R. Couchinoux, T. Donval, J. C. Poncetta, S. Reyné, B. Bertussi, and H. Bercegol, “Parametric study of laser-induced surface damage density measurements: Toward reproducibility,” J. Appl. Phys. 107(2), 023105 (2010).
[CrossRef]

Ravizza, F. L.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

Reyné, S.

L. Lamaignère, M. Balas, R. Couchinoux, T. Donval, J. C. Poncetta, S. Reyné, B. Bertussi, and H. Bercegol, “Parametric study of laser-induced surface damage density measurements: Toward reproducibility,” J. Appl. Phys. 107(2), 023105 (2010).
[CrossRef]

Rotter, M.

M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a Process Model for CO2 Laser Mitigation of Damage Growth in Fused Silica,” Proc. SPIE 5273, 145–154 (2004).
[CrossRef]

Rubenchik, A.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Rubenchik, A. M.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a Process Model for CO2 Laser Mitigation of Damage Growth in Fused Silica,” Proc. SPIE 5273, 145–154 (2004).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
[CrossRef]

Rullier, J.-L.

L. Gallais, P. Cormont, and J.-L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express 17(26), 23488–23501 (2009).
[CrossRef]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J.-L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255(10), 5532–5536 (2009).
[CrossRef]

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[CrossRef] [PubMed]

Shen, N.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Spaeth, M. L.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Steele, W. A.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Stevens-Kalceff, M. A.

M. A. Stevens-Kalceff and J. Wong, “Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser,” J. Appl. Phys. 97(11), 113519 (2005).
[CrossRef]

Summers, L. J.

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Suratwala, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Temple, P. A.

P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21(18), 3249–3255 (1982).
[CrossRef] [PubMed]

Villarreal, F. J.

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006).
[CrossRef] [PubMed]

Wang, X.

J. Jiao and X. Wang, “Cutting glass substrates with dual-laser beams,” Opt. Laser Eng. , 860 (2008).

Wegner, P. J.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606 (2010).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Widmayer, C. C.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

Wong, J.

M. A. Stevens-Kalceff and J. Wong, “Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser,” J. Appl. Phys. 97(11), 113519 (2005).
[CrossRef]

Yang, S. T.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606 (2010).
[CrossRef]

Appl. Opt. (4)

P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21(18), 3249–3255 (1982).
[CrossRef] [PubMed]

K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45(1), 162–171 (2006).
[CrossRef] [PubMed]

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006).
[CrossRef] [PubMed]

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J.-L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255(10), 5532–5536 (2009).
[CrossRef]

J. Appl. Phys. (2)

M. A. Stevens-Kalceff and J. Wong, “Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser,” J. Appl. Phys. 97(11), 113519 (2005).
[CrossRef]

L. Lamaignère, M. Balas, R. Couchinoux, T. Donval, J. C. Poncetta, S. Reyné, B. Bertussi, and H. Bercegol, “Parametric study of laser-induced surface damage density measurements: Toward reproducibility,” J. Appl. Phys. 107(2), 023105 (2010).
[CrossRef]

Opt. Express (2)

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[CrossRef] [PubMed]

L. Gallais, P. Cormont, and J.-L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express 17(26), 23488–23501 (2009).
[CrossRef]

Opt. Laser Eng. (1)

J. Jiao and X. Wang, “Cutting glass substrates with dual-laser beams,” Opt. Laser Eng. , 860 (2008).

Proc. SPIE (11)

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2 laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34 (2002).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of Laser Damage Growth in Fused Silica with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

S. Mainguy, B. Le Garrec, and M. Josse, “Downstream impact of flaws on the LIL/LMJ laser lines,” Proc. SPIE 5991, 599105 (2005).
[CrossRef]

H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[CrossRef]

I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 6261, 62612A (2006).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
[CrossRef]

M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a Process Model for CO2 Laser Mitigation of Damage Growth in Fused Silica,” Proc. SPIE 5273, 145–154 (2004).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002).
[CrossRef]

Other (2)

J. Zarzyski, “Les verres et l'état vitreux,” Masson (1982).

See http://hpfs@corning.com/ for #7980 product specification.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The first row of images was obtained with oblique illumination microscopy (OI) and the second with confocal microscopy (C). The first column (D) is the characterization of a typical damage, the second (H1) is its transformation after the first heating by CO2 laser, and the third (H2) shows the impact of the second heating with a power of 12.5 W on the previous crater.

Fig. 2
Fig. 2

The left part of the figure (H1) is the characterization of the crater formed after the first heating by CO2 laser, and the right part (H2) shows the impact of the second heating with a power of 12.5 W on the previous crater. Images were obtained with Nomarski microscopy (N) and dark field microscopy (DF), and profiles along the dashed lines by interferential microscopy (I).

Fig. 3
Fig. 3

Images were obtained with polariscope (P). The left image (D) is a characterization of a typical damage, the middle (H1) is its transformation after the first heating by CO2 laser, and the right (H2) shows the impact of the second heating with a power of 12.5 W on the previous crater.

Fig. 4
Fig. 4

Polariscope images of a site heated once by CO2 laser then irradiated at 12 J/cm2 with the Nd: YAG laser (P-H1), and of a second site heated twice by CO2 then irradiated at 15 J/cm2 with the Nd: YAG (P-H1 + H2). Area where fluence is greater than 80% of its maximum is identified by a disc.

Fig. 5
Fig. 5

Laser damage probability as a function of the fluence of irradiation at 355 nm. Before the damage test, each site had been heated by a first CO2 laser (1 s, 0.6 mm at 1/e2 and 5.5 W), then different power levels were used for the second heating (1 s and 1.4 mm at 1/e2). Each color corresponds to a value of power used for the second heating.

Fig. 6
Fig. 6

Comparison between one (P-H2) and two (P-H1 + H2) CO2 laser irradiations. Polariscope images of each site were realized after being heated by CO2 laser and also after being UV damage tested at 12 J/cm2. Area where fluence is greater than 80% of its maximum is identified by a disc.

Fig. 7
Fig. 7

Calculated temperature distribution in fused silica at the end of the CO2 laser irradiations for parameters of one repairing irradiation (T-H1) and one re-heating irradiation (T-H2). For mitigation (T-H1), the white line delimits the crater.

Fig. 8
Fig. 8

Calculated stress repartition in fused silica at the end of the CO2 laser irradiations for parameters of one repairing irradiation (H1) and one re-heating irradiation (H2). Radial stresses are represented in the upper part (RS), and hoop at the lower (HS). For mitigation (H1), the white line delimits the crater and zones of potential damage with dashed lines.

Metrics