Abstract

When a coherent beam illuminates spatially disordered particles, speckle patterns are formed due to interference of the scattered light waves. Speckle patterns from biological tissues using synchrotron phase contrast X-ray imaging can provide functional information about micro-scale morphological structures of the tissues. In this study, we investigated the size and contrast variations of the speckles of aggregated red blood cells (RBCs) suspensions with varying the degree of RBC aggregation. Results show that the degree of RBC aggregation is a governing parameter on the change of speckle characteristics. This blood speckle analysis method can be used as a novel modality for monitoring RBC aggregation.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
On the use of photoacoustics to detect red blood cell aggregation

Eno Hysi, Ratan K. Saha, and Michael C. Kolios
Biomed. Opt. Express 3(9) 2326-2338 (2012)

Simultaneous assessment of red blood cell aggregation and oxygen saturation under pulsatile flow using high-frequency photoacoustics

Tae-Hoon Bok, Eno Hysi, and Michael C. Kolios
Biomed. Opt. Express 7(7) 2769-2780 (2016)

Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy

Yong-Seok Choi and Sang-Joon Lee
Appl. Opt. 48(16) 2983-2990 (2009)

References

  • View by:
  • |
  • |
  • |

  1. G. Da Costa and J. Ferrari, “Anisotropic speckle patterns in the light scattered by rough cylindrical surfaces,” Appl. Opt. 36(21), 5231–5237 (1997).
    [Crossref] [PubMed]
  2. P. Lehmann, “Surface-roughness measurement based on the intensity correlation function of scattered light under speckle-pattern illumination,” Appl. Opt. 38(7), 1144–1152 (1999).
    [Crossref]
  3. R. Berlasso, F. Perez Quintián, M. A. Rebollo, C. A. Raffo, and N. G. Gaggioli, “Study of speckle size of light scattered from cylindrical rough surfaces,” Appl. Opt. 39(31), 5811–5819 (2000).
    [Crossref]
  4. Y. Piederrière, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, and G. Le Brun, “Backscattered speckle size as a function of polarization: influence of particle-size and- concentration,” Opt. Express 13(13), 5030–5039 (2005).
    [Crossref] [PubMed]
  5. Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt. 9(2), 408–412 (2004).
    [Crossref] [PubMed]
  6. Y. Piederrière, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, and J. Lortrian, “Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering,” Opt. Express 12(1), 176–188 (2004).
    [Crossref] [PubMed]
  7. Y. Piederrière, J. Le Meur, J. Cariou, J. Abgrall, and M. Blouch, “Particle aggregation monitoring by speckle size measurement; application to blood platelets aggregation,” Opt. Express 12(19), 4596–4601 (2004).
    [Crossref] [PubMed]
  8. M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
    [Crossref] [PubMed]
  9. M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
    [Crossref] [PubMed]
  10. S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
    [Crossref]
  11. S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18(3), 2368–2379 (2010).
    [Crossref] [PubMed]
  12. G. B. Kim and S. J. Lee, “X-ray PIV measurements of blood flows without tracer particles,” Exp. Fluids 41(2), 195–200 (2006).
    [Crossref]
  13. G. B. Kim and S. J. Lee, “Contrast enhancement of speckle patterns from blood in synchrotron X-ray imaging,” J. Biomech. 42(4), 449–454 (2009).
    [Crossref] [PubMed]
  14. S. Chien, “Shear dependence of effective cell volume as a determinant of blood viscosity,” Science 168(3934), 977–979 (1970).
    [Crossref] [PubMed]
  15. M. Cabel, H. J. Meiselman, A. S. Popel, and P. C. Johnson, “Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle,” Am. J. Physiol. 272(2 Pt 2), H1020–H1032 (1997).
    [PubMed]
  16. G. Mchedlishvili, L. Gobejishvili, and N. Beritashvili, “Effect of intensified red blood cell aggregability on arterial pressure and mesenteric microcirculation,” Microvasc. Res. 45(3), 233–242 (1993).
    [Crossref] [PubMed]
  17. E. Kaliviotis and M. Yianneskis, “Fast response characteristics of red blood cell aggregation,” Biorheology 45(6), 639–649 (2008).
    [PubMed]
  18. J. H. Nam, Y. Yang, S. Chung, and S. Shin, “Comparison of light-transmission and -backscattering methods in the measurement of red blood cell aggregation,” J. Biomed. Opt. 15(2), 027003 (2010).
    [Crossref] [PubMed]
  19. K. H. Nam, D. G. Paeng, and M. J. Choi, “Ultrasonic backscatter from rat blood in aggregating media under in vitro rotational flow,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 270–279 (2009).
    [Crossref] [PubMed]
  20. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
    [Crossref] [PubMed]
  21. M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
    [Crossref]
  22. Z. Qin, L. G. Durand, L. Allard, and G. Cloutier, “Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power,” Ultrasound Med. Biol. 24(4), 503–511 (1998).
    [Crossref] [PubMed]
  23. B. Neu and H. J. Meiselman, “Depletion-mediated red blood cell aggregation in polymer solutions,” Biophys. J. 83(5), 2482–2490 (2002).
    [Crossref] [PubMed]
  24. M. W. Rampling, H. J. Meiselman, B. Neu, and O. K. Baskurt, “Influence of cell-specific factors on red blood cell aggregation,” Biorheology 41(2), 91–112 (2004).
    [PubMed]
  25. D. Fatkin, T. Loupas, J. Low, and M. Feneley, “Inhibition of red cell aggregation prevents spontaneous echocardiographic contrast formation in human blood,” Circulation 96(3), 889–896 (1997).
    [PubMed]
  26. H. J. Meiselman, “Red blood cell aggregation: 45 years being curious,” Biorheology 46(1), 1–19 (2009).
    [PubMed]
  27. M. W. Westneat, J. J. Socha, and W. K. Lee, “Advances in biological structure, function, and physiology using synchrotron X-ray imaging*,” Annu. Rev. Physiol. 70(1), 119–142 (2008).
    [Crossref] [PubMed]
  28. S. J. Lee and S. Kim, “Simultaneous measurement of size and velocity of microbubbles moving in an opaque tube using an X-ray particle tracking velocimetry technique,” Exp. Fluids 39(3), 492–495 (2005).
    [Crossref]
  29. O. K. Baskurt and H. J. Meiselman, “Blood rheology and hemodynamics,” Semin. Thromb. Hemost. 29(5), 435–450 (2003).
    [Crossref] [PubMed]
  30. J. J. Bishop, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Rheological effects of red blood cell aggregation in the venous network: a review of recent studies,” Biorheology 38(2-3), 263–274 (2001).
    [PubMed]
  31. O. K. Baskurt and H. J. Meiselman, “RBC aggregation: more important than RBC adhesion to endothelial cells as a determinant of in vivo blood flow in health and disease,” Microcirculation 15(7), 585–590 (2008).
    [Crossref] [PubMed]
  32. C. Le Devehat, M. Vimeux, G. Bondoux, and T. Khodabandehlou, “Red blood cell aggregation in diabetes mellitus,” Int. Angiol. 9(1), 11–15 (1990).
    [PubMed]
  33. S. M. MacRury, S. E. Lennie, P. McColl, R. Balendra, A. C. MacCuish, and G. D. Lowe, “Increased red cell aggregation in diabetes mellitus: association with cardiovascular risk factors,” Diabet. Med. 10(1), 21–26 (1993).
    [Crossref] [PubMed]
  34. E. Ernst, K. L. Resch, A. Matrai, M. Buhl, P. Schlosser, and H. F. Paulsen, “Impaired blood rheology: a risk factor after stroke?” J. Intern. Med. 229(5), 457–462 (1991).
    [Crossref] [PubMed]
  35. S. Berliner, D. Zeltser, R. Rotstein, R. Fusman, and I. Shapira, “A leukocyte and erythrocyte adhesiveness/aggregation test to reveal the presence of smoldering inflammation and risk factors for atherosclerosis,” Med. Hypotheses 57(2), 207–209 (2001).
    [Crossref] [PubMed]
  36. M. R. Hardeman, J. G. Dobbe, and C. Ince, “The Laser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer,” Clin. Hemorheol. Microcirc. 25(1), 1–11 (2001).
  37. M. Donner, M. Siadat, and J. F. Stoltz, “Erythrocyte aggregation: approach by light scattering determination,” Biorheology 25(1-2), 367–375 (1988).
    [PubMed]
  38. H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinich, and H. Schmid-Schönbein, “Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation,” Pflugers Arch. 333(2), 126–139 (1972).
    [Crossref] [PubMed]

2010 (2)

S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18(3), 2368–2379 (2010).
[Crossref] [PubMed]

J. H. Nam, Y. Yang, S. Chung, and S. Shin, “Comparison of light-transmission and -backscattering methods in the measurement of red blood cell aggregation,” J. Biomed. Opt. 15(2), 027003 (2010).
[Crossref] [PubMed]

2009 (4)

K. H. Nam, D. G. Paeng, and M. J. Choi, “Ultrasonic backscatter from rat blood in aggregating media under in vitro rotational flow,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 270–279 (2009).
[Crossref] [PubMed]

M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref]

H. J. Meiselman, “Red blood cell aggregation: 45 years being curious,” Biorheology 46(1), 1–19 (2009).
[PubMed]

G. B. Kim and S. J. Lee, “Contrast enhancement of speckle patterns from blood in synchrotron X-ray imaging,” J. Biomech. 42(4), 449–454 (2009).
[Crossref] [PubMed]

2008 (5)

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

M. W. Westneat, J. J. Socha, and W. K. Lee, “Advances in biological structure, function, and physiology using synchrotron X-ray imaging*,” Annu. Rev. Physiol. 70(1), 119–142 (2008).
[Crossref] [PubMed]

O. K. Baskurt and H. J. Meiselman, “RBC aggregation: more important than RBC adhesion to endothelial cells as a determinant of in vivo blood flow in health and disease,” Microcirculation 15(7), 585–590 (2008).
[Crossref] [PubMed]

E. Kaliviotis and M. Yianneskis, “Fast response characteristics of red blood cell aggregation,” Biorheology 45(6), 639–649 (2008).
[PubMed]

2006 (1)

G. B. Kim and S. J. Lee, “X-ray PIV measurements of blood flows without tracer particles,” Exp. Fluids 41(2), 195–200 (2006).
[Crossref]

2005 (2)

Y. Piederrière, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, and G. Le Brun, “Backscattered speckle size as a function of polarization: influence of particle-size and- concentration,” Opt. Express 13(13), 5030–5039 (2005).
[Crossref] [PubMed]

S. J. Lee and S. Kim, “Simultaneous measurement of size and velocity of microbubbles moving in an opaque tube using an X-ray particle tracking velocimetry technique,” Exp. Fluids 39(3), 492–495 (2005).
[Crossref]

2004 (5)

M. W. Rampling, H. J. Meiselman, B. Neu, and O. K. Baskurt, “Influence of cell-specific factors on red blood cell aggregation,” Biorheology 41(2), 91–112 (2004).
[PubMed]

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt. 9(2), 408–412 (2004).
[Crossref] [PubMed]

Y. Piederrière, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, and J. Lortrian, “Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering,” Opt. Express 12(1), 176–188 (2004).
[Crossref] [PubMed]

Y. Piederrière, J. Le Meur, J. Cariou, J. Abgrall, and M. Blouch, “Particle aggregation monitoring by speckle size measurement; application to blood platelets aggregation,” Opt. Express 12(19), 4596–4601 (2004).
[Crossref] [PubMed]

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

2003 (2)

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[Crossref] [PubMed]

O. K. Baskurt and H. J. Meiselman, “Blood rheology and hemodynamics,” Semin. Thromb. Hemost. 29(5), 435–450 (2003).
[Crossref] [PubMed]

2002 (1)

B. Neu and H. J. Meiselman, “Depletion-mediated red blood cell aggregation in polymer solutions,” Biophys. J. 83(5), 2482–2490 (2002).
[Crossref] [PubMed]

2001 (3)

J. J. Bishop, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Rheological effects of red blood cell aggregation in the venous network: a review of recent studies,” Biorheology 38(2-3), 263–274 (2001).
[PubMed]

S. Berliner, D. Zeltser, R. Rotstein, R. Fusman, and I. Shapira, “A leukocyte and erythrocyte adhesiveness/aggregation test to reveal the presence of smoldering inflammation and risk factors for atherosclerosis,” Med. Hypotheses 57(2), 207–209 (2001).
[Crossref] [PubMed]

M. R. Hardeman, J. G. Dobbe, and C. Ince, “The Laser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer,” Clin. Hemorheol. Microcirc. 25(1), 1–11 (2001).

2000 (1)

1999 (1)

1998 (1)

Z. Qin, L. G. Durand, L. Allard, and G. Cloutier, “Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power,” Ultrasound Med. Biol. 24(4), 503–511 (1998).
[Crossref] [PubMed]

1997 (3)

D. Fatkin, T. Loupas, J. Low, and M. Feneley, “Inhibition of red cell aggregation prevents spontaneous echocardiographic contrast formation in human blood,” Circulation 96(3), 889–896 (1997).
[PubMed]

G. Da Costa and J. Ferrari, “Anisotropic speckle patterns in the light scattered by rough cylindrical surfaces,” Appl. Opt. 36(21), 5231–5237 (1997).
[Crossref] [PubMed]

M. Cabel, H. J. Meiselman, A. S. Popel, and P. C. Johnson, “Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle,” Am. J. Physiol. 272(2 Pt 2), H1020–H1032 (1997).
[PubMed]

1993 (2)

G. Mchedlishvili, L. Gobejishvili, and N. Beritashvili, “Effect of intensified red blood cell aggregability on arterial pressure and mesenteric microcirculation,” Microvasc. Res. 45(3), 233–242 (1993).
[Crossref] [PubMed]

S. M. MacRury, S. E. Lennie, P. McColl, R. Balendra, A. C. MacCuish, and G. D. Lowe, “Increased red cell aggregation in diabetes mellitus: association with cardiovascular risk factors,” Diabet. Med. 10(1), 21–26 (1993).
[Crossref] [PubMed]

1991 (1)

E. Ernst, K. L. Resch, A. Matrai, M. Buhl, P. Schlosser, and H. F. Paulsen, “Impaired blood rheology: a risk factor after stroke?” J. Intern. Med. 229(5), 457–462 (1991).
[Crossref] [PubMed]

1990 (1)

C. Le Devehat, M. Vimeux, G. Bondoux, and T. Khodabandehlou, “Red blood cell aggregation in diabetes mellitus,” Int. Angiol. 9(1), 11–15 (1990).
[PubMed]

1988 (1)

M. Donner, M. Siadat, and J. F. Stoltz, “Erythrocyte aggregation: approach by light scattering determination,” Biorheology 25(1-2), 367–375 (1988).
[PubMed]

1972 (1)

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinich, and H. Schmid-Schönbein, “Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation,” Pflugers Arch. 333(2), 126–139 (1972).
[Crossref] [PubMed]

1970 (1)

S. Chien, “Shear dependence of effective cell volume as a determinant of blood viscosity,” Science 168(3934), 977–979 (1970).
[Crossref] [PubMed]

Abgrall, J.

Abgrall, J. F.

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt. 9(2), 408–412 (2004).
[Crossref] [PubMed]

Allard, L.

Z. Qin, L. G. Durand, L. Allard, and G. Cloutier, “Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power,” Ultrasound Med. Biol. 24(4), 503–511 (1998).
[Crossref] [PubMed]

Balendra, R.

S. M. MacRury, S. E. Lennie, P. McColl, R. Balendra, A. C. MacCuish, and G. D. Lowe, “Increased red cell aggregation in diabetes mellitus: association with cardiovascular risk factors,” Diabet. Med. 10(1), 21–26 (1993).
[Crossref] [PubMed]

Baskurt, O. K.

O. K. Baskurt and H. J. Meiselman, “RBC aggregation: more important than RBC adhesion to endothelial cells as a determinant of in vivo blood flow in health and disease,” Microcirculation 15(7), 585–590 (2008).
[Crossref] [PubMed]

M. W. Rampling, H. J. Meiselman, B. Neu, and O. K. Baskurt, “Influence of cell-specific factors on red blood cell aggregation,” Biorheology 41(2), 91–112 (2004).
[PubMed]

O. K. Baskurt and H. J. Meiselman, “Blood rheology and hemodynamics,” Semin. Thromb. Hemost. 29(5), 435–450 (2003).
[Crossref] [PubMed]

Beritashvili, N.

G. Mchedlishvili, L. Gobejishvili, and N. Beritashvili, “Effect of intensified red blood cell aggregability on arterial pressure and mesenteric microcirculation,” Microvasc. Res. 45(3), 233–242 (1993).
[Crossref] [PubMed]

Berlasso, R.

Berliner, S.

S. Berliner, D. Zeltser, R. Rotstein, R. Fusman, and I. Shapira, “A leukocyte and erythrocyte adhesiveness/aggregation test to reveal the presence of smoldering inflammation and risk factors for atherosclerosis,” Med. Hypotheses 57(2), 207–209 (2001).
[Crossref] [PubMed]

Bishop, J. J.

J. J. Bishop, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Rheological effects of red blood cell aggregation in the venous network: a review of recent studies,” Biorheology 38(2-3), 263–274 (2001).
[PubMed]

Blouch, M.

Blouch, M. T.

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt. 9(2), 408–412 (2004).
[Crossref] [PubMed]

Bondoux, G.

C. Le Devehat, M. Vimeux, G. Bondoux, and T. Khodabandehlou, “Red blood cell aggregation in diabetes mellitus,” Int. Angiol. 9(1), 11–15 (1990).
[PubMed]

Boulvert, F.

Brechtelsbauer, H.

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinich, and H. Schmid-Schönbein, “Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation,” Pflugers Arch. 333(2), 126–139 (1972).
[Crossref] [PubMed]

Buhl, M.

E. Ernst, K. L. Resch, A. Matrai, M. Buhl, P. Schlosser, and H. F. Paulsen, “Impaired blood rheology: a risk factor after stroke?” J. Intern. Med. 229(5), 457–462 (1991).
[Crossref] [PubMed]

Cabel, M.

M. Cabel, H. J. Meiselman, A. S. Popel, and P. C. Johnson, “Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle,” Am. J. Physiol. 272(2 Pt 2), H1020–H1032 (1997).
[PubMed]

Cariou, J.

Cen, J.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[Crossref] [PubMed]

Chen, S.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[Crossref] [PubMed]

Cheng, H.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[Crossref] [PubMed]

Chien, S.

S. Chien, “Shear dependence of effective cell volume as a determinant of blood viscosity,” Science 168(3934), 977–979 (1970).
[Crossref] [PubMed]

Choi, M. J.

K. H. Nam, D. G. Paeng, and M. J. Choi, “Ultrasonic backscatter from rat blood in aggregating media under in vitro rotational flow,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 270–279 (2009).
[Crossref] [PubMed]

Chung, S.

J. H. Nam, Y. Yang, S. Chung, and S. Shin, “Comparison of light-transmission and -backscattering methods in the measurement of red blood cell aggregation,” J. Biomed. Opt. 15(2), 027003 (2010).
[Crossref] [PubMed]

Cloutier, G.

Z. Qin, L. G. Durand, L. Allard, and G. Cloutier, “Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power,” Ultrasound Med. Biol. 24(4), 503–511 (1998).
[Crossref] [PubMed]

Da Costa, G.

Dobbe, J. G.

M. R. Hardeman, J. G. Dobbe, and C. Ince, “The Laser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer,” Clin. Hemorheol. Microcirc. 25(1), 1–11 (2001).

Donner, M.

M. Donner, M. Siadat, and J. F. Stoltz, “Erythrocyte aggregation: approach by light scattering determination,” Biorheology 25(1-2), 367–375 (1988).
[PubMed]

Draijer, M.

M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref]

Dubsky, S.

S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18(3), 2368–2379 (2010).
[Crossref] [PubMed]

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

Durand, L. G.

Z. Qin, L. G. Durand, L. Allard, and G. Cloutier, “Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power,” Ultrasound Med. Biol. 24(4), 503–511 (1998).
[Crossref] [PubMed]

Ernst, E.

E. Ernst, K. L. Resch, A. Matrai, M. Buhl, P. Schlosser, and H. F. Paulsen, “Impaired blood rheology: a risk factor after stroke?” J. Intern. Med. 229(5), 457–462 (1991).
[Crossref] [PubMed]

Fatkin, D.

D. Fatkin, T. Loupas, J. Low, and M. Feneley, “Inhibition of red cell aggregation prevents spontaneous echocardiographic contrast formation in human blood,” Circulation 96(3), 889–896 (1997).
[PubMed]

Feneley, M.

D. Fatkin, T. Loupas, J. Low, and M. Feneley, “Inhibition of red cell aggregation prevents spontaneous echocardiographic contrast formation in human blood,” Circulation 96(3), 889–896 (1997).
[PubMed]

Ferrari, J.

Fouras, A.

S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18(3), 2368–2379 (2010).
[Crossref] [PubMed]

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

Fusman, R.

S. Berliner, D. Zeltser, R. Rotstein, R. Fusman, and I. Shapira, “A leukocyte and erythrocyte adhesiveness/aggregation test to reveal the presence of smoldering inflammation and risk factors for atherosclerosis,” Med. Hypotheses 57(2), 207–209 (2001).
[Crossref] [PubMed]

Gaggioli, N. G.

Gobejishvili, L.

G. Mchedlishvili, L. Gobejishvili, and N. Beritashvili, “Effect of intensified red blood cell aggregability on arterial pressure and mesenteric microcirculation,” Microvasc. Res. 45(3), 233–242 (1993).
[Crossref] [PubMed]

Gong, H.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[Crossref] [PubMed]

Guern, Y.

Habib, A.

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

Hardeman, M. R.

M. R. Hardeman, J. G. Dobbe, and C. Ince, “The Laser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer,” Clin. Hemorheol. Microcirc. 25(1), 1–11 (2001).

Heinich, L.

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinich, and H. Schmid-Schönbein, “Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation,” Pflugers Arch. 333(2), 126–139 (1972).
[Crossref] [PubMed]

Hondebrink, E.

M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref]

Hooper, S. B.

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

Ince, C.

M. R. Hardeman, J. G. Dobbe, and C. Ince, “The Laser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer,” Clin. Hemorheol. Microcirc. 25(1), 1–11 (2001).

Intaglietta, M.

J. J. Bishop, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Rheological effects of red blood cell aggregation in the venous network: a review of recent studies,” Biorheology 38(2-3), 263–274 (2001).
[PubMed]

Irvine, S. C.

S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18(3), 2368–2379 (2010).
[Crossref] [PubMed]

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

Jamison, A.

Johnson, P. C.

J. J. Bishop, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Rheological effects of red blood cell aggregation in the venous network: a review of recent studies,” Biorheology 38(2-3), 263–274 (2001).
[PubMed]

M. Cabel, H. J. Meiselman, A. S. Popel, and P. C. Johnson, “Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle,” Am. J. Physiol. 272(2 Pt 2), H1020–H1032 (1997).
[PubMed]

Kaliviotis, E.

E. Kaliviotis and M. Yianneskis, “Fast response characteristics of red blood cell aggregation,” Biorheology 45(6), 639–649 (2008).
[PubMed]

Khodabandehlou, T.

C. Le Devehat, M. Vimeux, G. Bondoux, and T. Khodabandehlou, “Red blood cell aggregation in diabetes mellitus,” Int. Angiol. 9(1), 11–15 (1990).
[PubMed]

Kim, G. B.

G. B. Kim and S. J. Lee, “Contrast enhancement of speckle patterns from blood in synchrotron X-ray imaging,” J. Biomech. 42(4), 449–454 (2009).
[Crossref] [PubMed]

G. B. Kim and S. J. Lee, “X-ray PIV measurements of blood flows without tracer particles,” Exp. Fluids 41(2), 195–200 (2006).
[Crossref]

Kim, S.

S. J. Lee and S. Kim, “Simultaneous measurement of size and velocity of microbubbles moving in an opaque tube using an X-ray particle tracking velocimetry technique,” Exp. Fluids 39(3), 492–495 (2005).
[Crossref]

Kitchen, M. J.

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Klose, H. J.

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinich, and H. Schmid-Schönbein, “Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation,” Pflugers Arch. 333(2), 126–139 (1972).
[Crossref] [PubMed]

Le Brun, G.

Le Devehat, C.

C. Le Devehat, M. Vimeux, G. Bondoux, and T. Khodabandehlou, “Red blood cell aggregation in diabetes mellitus,” Int. Angiol. 9(1), 11–15 (1990).
[PubMed]

Le Jeune, B.

Le Meur, J.

Lee, S. J.

G. B. Kim and S. J. Lee, “Contrast enhancement of speckle patterns from blood in synchrotron X-ray imaging,” J. Biomech. 42(4), 449–454 (2009).
[Crossref] [PubMed]

G. B. Kim and S. J. Lee, “X-ray PIV measurements of blood flows without tracer particles,” Exp. Fluids 41(2), 195–200 (2006).
[Crossref]

S. J. Lee and S. Kim, “Simultaneous measurement of size and velocity of microbubbles moving in an opaque tube using an X-ray particle tracking velocimetry technique,” Exp. Fluids 39(3), 492–495 (2005).
[Crossref]

Lee, W. K.

M. W. Westneat, J. J. Socha, and W. K. Lee, “Advances in biological structure, function, and physiology using synchrotron X-ray imaging*,” Annu. Rev. Physiol. 70(1), 119–142 (2008).
[Crossref] [PubMed]

Leeuwen, T.

M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref]

Lehmann, P.

Lennie, S. E.

S. M. MacRury, S. E. Lennie, P. McColl, R. Balendra, A. C. MacCuish, and G. D. Lowe, “Increased red cell aggregation in diabetes mellitus: association with cardiovascular risk factors,” Diabet. Med. 10(1), 21–26 (1993).
[Crossref] [PubMed]

Lewis, R. A.

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Lortrian, J.

Lotrian, J.

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt. 9(2), 408–412 (2004).
[Crossref] [PubMed]

Loupas, T.

D. Fatkin, T. Loupas, J. Low, and M. Feneley, “Inhibition of red cell aggregation prevents spontaneous echocardiographic contrast formation in human blood,” Circulation 96(3), 889–896 (1997).
[PubMed]

Low, J.

D. Fatkin, T. Loupas, J. Low, and M. Feneley, “Inhibition of red cell aggregation prevents spontaneous echocardiographic contrast formation in human blood,” Circulation 96(3), 889–896 (1997).
[PubMed]

Lowe, G. D.

S. M. MacRury, S. E. Lennie, P. McColl, R. Balendra, A. C. MacCuish, and G. D. Lowe, “Increased red cell aggregation in diabetes mellitus: association with cardiovascular risk factors,” Diabet. Med. 10(1), 21–26 (1993).
[Crossref] [PubMed]

Luo, Q.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[Crossref] [PubMed]

MacCuish, A. C.

S. M. MacRury, S. E. Lennie, P. McColl, R. Balendra, A. C. MacCuish, and G. D. Lowe, “Increased red cell aggregation in diabetes mellitus: association with cardiovascular risk factors,” Diabet. Med. 10(1), 21–26 (1993).
[Crossref] [PubMed]

MacRury, S. M.

S. M. MacRury, S. E. Lennie, P. McColl, R. Balendra, A. C. MacCuish, and G. D. Lowe, “Increased red cell aggregation in diabetes mellitus: association with cardiovascular risk factors,” Diabet. Med. 10(1), 21–26 (1993).
[Crossref] [PubMed]

Matrai, A.

E. Ernst, K. L. Resch, A. Matrai, M. Buhl, P. Schlosser, and H. F. Paulsen, “Impaired blood rheology: a risk factor after stroke?” J. Intern. Med. 229(5), 457–462 (1991).
[Crossref] [PubMed]

McColl, P.

S. M. MacRury, S. E. Lennie, P. McColl, R. Balendra, A. C. MacCuish, and G. D. Lowe, “Increased red cell aggregation in diabetes mellitus: association with cardiovascular risk factors,” Diabet. Med. 10(1), 21–26 (1993).
[Crossref] [PubMed]

Mchedlishvili, G.

G. Mchedlishvili, L. Gobejishvili, and N. Beritashvili, “Effect of intensified red blood cell aggregability on arterial pressure and mesenteric microcirculation,” Microvasc. Res. 45(3), 233–242 (1993).
[Crossref] [PubMed]

Meiselman, H. J.

H. J. Meiselman, “Red blood cell aggregation: 45 years being curious,” Biorheology 46(1), 1–19 (2009).
[PubMed]

O. K. Baskurt and H. J. Meiselman, “RBC aggregation: more important than RBC adhesion to endothelial cells as a determinant of in vivo blood flow in health and disease,” Microcirculation 15(7), 585–590 (2008).
[Crossref] [PubMed]

M. W. Rampling, H. J. Meiselman, B. Neu, and O. K. Baskurt, “Influence of cell-specific factors on red blood cell aggregation,” Biorheology 41(2), 91–112 (2004).
[PubMed]

O. K. Baskurt and H. J. Meiselman, “Blood rheology and hemodynamics,” Semin. Thromb. Hemost. 29(5), 435–450 (2003).
[Crossref] [PubMed]

B. Neu and H. J. Meiselman, “Depletion-mediated red blood cell aggregation in polymer solutions,” Biophys. J. 83(5), 2482–2490 (2002).
[Crossref] [PubMed]

M. Cabel, H. J. Meiselman, A. S. Popel, and P. C. Johnson, “Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle,” Am. J. Physiol. 272(2 Pt 2), H1020–H1032 (1997).
[PubMed]

Morgan, M. J.

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

Mudie, S. T.

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Nam, J. H.

J. H. Nam, Y. Yang, S. Chung, and S. Shin, “Comparison of light-transmission and -backscattering methods in the measurement of red blood cell aggregation,” J. Biomed. Opt. 15(2), 027003 (2010).
[Crossref] [PubMed]

Nam, K. H.

K. H. Nam, D. G. Paeng, and M. J. Choi, “Ultrasonic backscatter from rat blood in aggregating media under in vitro rotational flow,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 270–279 (2009).
[Crossref] [PubMed]

Neu, B.

M. W. Rampling, H. J. Meiselman, B. Neu, and O. K. Baskurt, “Influence of cell-specific factors on red blood cell aggregation,” Biorheology 41(2), 91–112 (2004).
[PubMed]

B. Neu and H. J. Meiselman, “Depletion-mediated red blood cell aggregation in polymer solutions,” Biophys. J. 83(5), 2482–2490 (2002).
[Crossref] [PubMed]

Paeng, D. G.

K. H. Nam, D. G. Paeng, and M. J. Choi, “Ultrasonic backscatter from rat blood in aggregating media under in vitro rotational flow,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 270–279 (2009).
[Crossref] [PubMed]

Paganin, D.

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Paganin, D. M.

S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18(3), 2368–2379 (2010).
[Crossref] [PubMed]

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

Paulsen, H. F.

E. Ernst, K. L. Resch, A. Matrai, M. Buhl, P. Schlosser, and H. F. Paulsen, “Impaired blood rheology: a risk factor after stroke?” J. Intern. Med. 229(5), 457–462 (1991).
[Crossref] [PubMed]

Perez Quintián, F.

Piederrière, Y.

Popel, A. S.

J. J. Bishop, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Rheological effects of red blood cell aggregation in the venous network: a review of recent studies,” Biorheology 38(2-3), 263–274 (2001).
[PubMed]

M. Cabel, H. J. Meiselman, A. S. Popel, and P. C. Johnson, “Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle,” Am. J. Physiol. 272(2 Pt 2), H1020–H1032 (1997).
[PubMed]

Qin, Z.

Z. Qin, L. G. Durand, L. Allard, and G. Cloutier, “Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power,” Ultrasound Med. Biol. 24(4), 503–511 (1998).
[Crossref] [PubMed]

Raffo, C. A.

Rampling, M. W.

M. W. Rampling, H. J. Meiselman, B. Neu, and O. K. Baskurt, “Influence of cell-specific factors on red blood cell aggregation,” Biorheology 41(2), 91–112 (2004).
[PubMed]

Rebollo, M. A.

Resch, K. L.

E. Ernst, K. L. Resch, A. Matrai, M. Buhl, P. Schlosser, and H. F. Paulsen, “Impaired blood rheology: a risk factor after stroke?” J. Intern. Med. 229(5), 457–462 (1991).
[Crossref] [PubMed]

Rotstein, R.

S. Berliner, D. Zeltser, R. Rotstein, R. Fusman, and I. Shapira, “A leukocyte and erythrocyte adhesiveness/aggregation test to reveal the presence of smoldering inflammation and risk factors for atherosclerosis,” Med. Hypotheses 57(2), 207–209 (2001).
[Crossref] [PubMed]

Schlosser, P.

E. Ernst, K. L. Resch, A. Matrai, M. Buhl, P. Schlosser, and H. F. Paulsen, “Impaired blood rheology: a risk factor after stroke?” J. Intern. Med. 229(5), 457–462 (1991).
[Crossref] [PubMed]

Schmid-Schönbein, H.

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinich, and H. Schmid-Schönbein, “Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation,” Pflugers Arch. 333(2), 126–139 (1972).
[Crossref] [PubMed]

Shapira, I.

S. Berliner, D. Zeltser, R. Rotstein, R. Fusman, and I. Shapira, “A leukocyte and erythrocyte adhesiveness/aggregation test to reveal the presence of smoldering inflammation and risk factors for atherosclerosis,” Med. Hypotheses 57(2), 207–209 (2001).
[Crossref] [PubMed]

Shin, S.

J. H. Nam, Y. Yang, S. Chung, and S. Shin, “Comparison of light-transmission and -backscattering methods in the measurement of red blood cell aggregation,” J. Biomed. Opt. 15(2), 027003 (2010).
[Crossref] [PubMed]

Siadat, M.

M. Donner, M. Siadat, and J. F. Stoltz, “Erythrocyte aggregation: approach by light scattering determination,” Biorheology 25(1-2), 367–375 (1988).
[PubMed]

Siew, M. L.

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

Siu, K. K.

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

Socha, J. J.

M. W. Westneat, J. J. Socha, and W. K. Lee, “Advances in biological structure, function, and physiology using synchrotron X-ray imaging*,” Annu. Rev. Physiol. 70(1), 119–142 (2008).
[Crossref] [PubMed]

Steenbergen, W.

M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref]

Stoltz, J. F.

M. Donner, M. Siadat, and J. F. Stoltz, “Erythrocyte aggregation: approach by light scattering determination,” Biorheology 25(1-2), 367–375 (1988).
[PubMed]

Uesugi, K.

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Vimeux, M.

C. Le Devehat, M. Vimeux, G. Bondoux, and T. Khodabandehlou, “Red blood cell aggregation in diabetes mellitus,” Int. Angiol. 9(1), 11–15 (1990).
[PubMed]

Volger, E.

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinich, and H. Schmid-Schönbein, “Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation,” Pflugers Arch. 333(2), 126–139 (1972).
[Crossref] [PubMed]

Wallace, M. J.

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

Westneat, M. W.

M. W. Westneat, J. J. Socha, and W. K. Lee, “Advances in biological structure, function, and physiology using synchrotron X-ray imaging*,” Annu. Rev. Physiol. 70(1), 119–142 (2008).
[Crossref] [PubMed]

Yagi, N.

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Yang, Y.

J. H. Nam, Y. Yang, S. Chung, and S. Shin, “Comparison of light-transmission and -backscattering methods in the measurement of red blood cell aggregation,” J. Biomed. Opt. 15(2), 027003 (2010).
[Crossref] [PubMed]

Yianneskis, M.

E. Kaliviotis and M. Yianneskis, “Fast response characteristics of red blood cell aggregation,” Biorheology 45(6), 639–649 (2008).
[PubMed]

Zeltser, D.

S. Berliner, D. Zeltser, R. Rotstein, R. Fusman, and I. Shapira, “A leukocyte and erythrocyte adhesiveness/aggregation test to reveal the presence of smoldering inflammation and risk factors for atherosclerosis,” Med. Hypotheses 57(2), 207–209 (2001).
[Crossref] [PubMed]

Zeng, S.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[Crossref] [PubMed]

Am. J. Physiol. (1)

M. Cabel, H. J. Meiselman, A. S. Popel, and P. C. Johnson, “Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle,” Am. J. Physiol. 272(2 Pt 2), H1020–H1032 (1997).
[PubMed]

Annu. Rev. Physiol. (1)

M. W. Westneat, J. J. Socha, and W. K. Lee, “Advances in biological structure, function, and physiology using synchrotron X-ray imaging*,” Annu. Rev. Physiol. 70(1), 119–142 (2008).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[Crossref]

Biophys. J. (1)

B. Neu and H. J. Meiselman, “Depletion-mediated red blood cell aggregation in polymer solutions,” Biophys. J. 83(5), 2482–2490 (2002).
[Crossref] [PubMed]

Biorheology (5)

M. W. Rampling, H. J. Meiselman, B. Neu, and O. K. Baskurt, “Influence of cell-specific factors on red blood cell aggregation,” Biorheology 41(2), 91–112 (2004).
[PubMed]

J. J. Bishop, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Rheological effects of red blood cell aggregation in the venous network: a review of recent studies,” Biorheology 38(2-3), 263–274 (2001).
[PubMed]

H. J. Meiselman, “Red blood cell aggregation: 45 years being curious,” Biorheology 46(1), 1–19 (2009).
[PubMed]

M. Donner, M. Siadat, and J. F. Stoltz, “Erythrocyte aggregation: approach by light scattering determination,” Biorheology 25(1-2), 367–375 (1988).
[PubMed]

E. Kaliviotis and M. Yianneskis, “Fast response characteristics of red blood cell aggregation,” Biorheology 45(6), 639–649 (2008).
[PubMed]

Circulation (1)

D. Fatkin, T. Loupas, J. Low, and M. Feneley, “Inhibition of red cell aggregation prevents spontaneous echocardiographic contrast formation in human blood,” Circulation 96(3), 889–896 (1997).
[PubMed]

Clin. Hemorheol. Microcirc. (1)

M. R. Hardeman, J. G. Dobbe, and C. Ince, “The Laser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer,” Clin. Hemorheol. Microcirc. 25(1), 1–11 (2001).

Diabet. Med. (1)

S. M. MacRury, S. E. Lennie, P. McColl, R. Balendra, A. C. MacCuish, and G. D. Lowe, “Increased red cell aggregation in diabetes mellitus: association with cardiovascular risk factors,” Diabet. Med. 10(1), 21–26 (1993).
[Crossref] [PubMed]

Exp. Fluids (2)

S. J. Lee and S. Kim, “Simultaneous measurement of size and velocity of microbubbles moving in an opaque tube using an X-ray particle tracking velocimetry technique,” Exp. Fluids 39(3), 492–495 (2005).
[Crossref]

G. B. Kim and S. J. Lee, “X-ray PIV measurements of blood flows without tracer particles,” Exp. Fluids 41(2), 195–200 (2006).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

K. H. Nam, D. G. Paeng, and M. J. Choi, “Ultrasonic backscatter from rat blood in aggregating media under in vitro rotational flow,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 270–279 (2009).
[Crossref] [PubMed]

Int. Angiol. (1)

C. Le Devehat, M. Vimeux, G. Bondoux, and T. Khodabandehlou, “Red blood cell aggregation in diabetes mellitus,” Int. Angiol. 9(1), 11–15 (1990).
[PubMed]

J. Biomech. (1)

G. B. Kim and S. J. Lee, “Contrast enhancement of speckle patterns from blood in synchrotron X-ray imaging,” J. Biomech. 42(4), 449–454 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

J. H. Nam, Y. Yang, S. Chung, and S. Shin, “Comparison of light-transmission and -backscattering methods in the measurement of red blood cell aggregation,” J. Biomed. Opt. 15(2), 027003 (2010).
[Crossref] [PubMed]

Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt. 9(2), 408–412 (2004).
[Crossref] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[Crossref] [PubMed]

J. Intern. Med. (1)

E. Ernst, K. L. Resch, A. Matrai, M. Buhl, P. Schlosser, and H. F. Paulsen, “Impaired blood rheology: a risk factor after stroke?” J. Intern. Med. 229(5), 457–462 (1991).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[Crossref]

Med. Hypotheses (1)

S. Berliner, D. Zeltser, R. Rotstein, R. Fusman, and I. Shapira, “A leukocyte and erythrocyte adhesiveness/aggregation test to reveal the presence of smoldering inflammation and risk factors for atherosclerosis,” Med. Hypotheses 57(2), 207–209 (2001).
[Crossref] [PubMed]

Microcirculation (1)

O. K. Baskurt and H. J. Meiselman, “RBC aggregation: more important than RBC adhesion to endothelial cells as a determinant of in vivo blood flow in health and disease,” Microcirculation 15(7), 585–590 (2008).
[Crossref] [PubMed]

Microvasc. Res. (1)

G. Mchedlishvili, L. Gobejishvili, and N. Beritashvili, “Effect of intensified red blood cell aggregability on arterial pressure and mesenteric microcirculation,” Microvasc. Res. 45(3), 233–242 (1993).
[Crossref] [PubMed]

Opt. Express (4)

Pflugers Arch. (1)

H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinich, and H. Schmid-Schönbein, “Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation,” Pflugers Arch. 333(2), 126–139 (1972).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008).
[Crossref] [PubMed]

M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004).
[Crossref] [PubMed]

Science (1)

S. Chien, “Shear dependence of effective cell volume as a determinant of blood viscosity,” Science 168(3934), 977–979 (1970).
[Crossref] [PubMed]

Semin. Thromb. Hemost. (1)

O. K. Baskurt and H. J. Meiselman, “Blood rheology and hemodynamics,” Semin. Thromb. Hemost. 29(5), 435–450 (2003).
[Crossref] [PubMed]

Ultrasound Med. Biol. (1)

Z. Qin, L. G. Durand, L. Allard, and G. Cloutier, “Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power,” Ultrasound Med. Biol. 24(4), 503–511 (1998).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

RBC rouleaux formed in plasma (60x magnification).

Fig. 2
Fig. 2

Schematic diagram of experimental set-up. The distance from the sample to the scintillator is 40cm.

Fig. 6
Fig. 6

Variation of speckle size during RBC aggregation process (a) Temporal evolution of speckle size during RBC aggregation. Blood flow and mechanical vibration stop at time = 0; (b) description of fitting curve and parameters.

Fig. 3
Fig. 3

Speckle image of blood at different hematocrit levels in various media. Size of each image is 200 pixels, corresponding to 228 μm (1.14 μm/pixel).

Fig. 4
Fig. 4

Variation of speckle size of RBCs according to hematocrit level and media conditions (n = 3).

Fig. 5
Fig. 5

Relationship between speckle size and speckle contrast. (Fitting curve equation: C s = - 3 × 10 5   d s 2 + 0.0056   d s - 0.1485 , r2 = 0.7, p<0.05).

Tables (1)

Tables Icon

Table 1 Main parameters of speckle patterns during RBC aggregation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Speckle   size = Size growth ( 1 - e - k t ) + Size initial
T half = 0.6932 / k
c I ( x , y ) = F T - 1 [ | F T [ I ( x , y ) ] | 2 ] - I ( x , y ) 2 I ( x , y ) 2 - I ( x , y ) 2
C = I ( x , y ) 2 - I ( x , y ) 2 I ( x , y )

Metrics