Abstract

An external-cavity (EC) quantum cascade (QC) laser using optical feedback from a partial-reflector is reported. With this configuration, the otherwise multi-mode emission of a Fabry-Perot QC laser was made single-mode with optical output powers exceeding 40 mW. A mode-hop free tuning range of 2.46 cm−1 was achieved by synchronously tuning the EC length and QC laser current. The linewidth of the partial-reflector EC-QC laser was measured for integration times from 100 μs to 4 seconds, and compared to a distributed feedback QC laser. Linewidths as small as 480 kHz were recorded for the EC-QC laser.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Applications of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
    [CrossRef]
  2. J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, and D. K. Milton, “Multicomponent Breath Analysis With Infrared Absorption Using Room-Temperature Quantum Cascade Lasers,” IEEE Sens. J. 10(1), 76–84 (2010).
    [CrossRef] [PubMed]
  3. K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogenous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
    [CrossRef]
  4. G. Stancu, N. Lang, J. Röpcke, M. Reinicke, A. Steinbach, and S. Wege, “In Situ Monitoring of Silicon Plasma Etching Using a Quantum Cascade Laser Arrangement,” Chem. Vap. Deposition 13(6-7), 351–360 (2007).
    [CrossRef]
  5. A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423K,” IEEE Photon. Lett. 21(12), 814–816 (2009).
    [CrossRef]
  6. G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
    [CrossRef]
  7. R. Maulini, D. A. Yarekha, J. M. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30(19), 2584–2586 (2005).
    [CrossRef] [PubMed]
  8. G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
    [CrossRef]
  9. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [CrossRef]
  10. H. Kakiuchida and J. Ohtsubo, “Characteristics of a semiconductor laser with external feedback,” IEEE J. Quantum Electron. 30(9), 2087–2097 (1994).
    [CrossRef]
  11. L. Viana, S. S. Vianna, M. Oriá, and J. W. Tabosa, “Diode laser mode selection using a long external cavity,” Appl. Opt. 35(3), 368–371 (1996).
    [CrossRef] [PubMed]
  12. N. Mukherjee, R. Go, C. Kumar, and N. Patel, “Linewidth measurement of external grating cavity quantum cascade laser using saturation spectroscopy,” Appl. Phys. Lett. 92(11), 111116 (2008).
    [CrossRef]
  13. N. Mukherjee and C. Patel, “Molecular fine structure and transition dipole moment of NO2 using an external cavity quantum cascade laser,” Chem. Phys. Lett. 462(1-3), 10–13 (2008).
    [CrossRef]
  14. G. Hancock, J. van Helden, R. Peverall, G. Ritchie, and R. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94(20), 201110 (2009).
    [CrossRef]
  15. T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
    [CrossRef]
  16. M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett. 27(24), 2164–2166 (2002).
    [CrossRef]
  17. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the Intrinsic Linewidth of Quantum-Cascade Lasers: Hidden Reason for the Narrow Linewidth and Line-Broadening by Thermal Photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
    [CrossRef]
  18. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
    [CrossRef] [PubMed]
  19. F. Bielsa, A. Douillet, T. Valenzuela, J. P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett. 32(12), 1641–1643 (2007).
    [CrossRef] [PubMed]

2010 (3)

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, and D. K. Milton, “Multicomponent Breath Analysis With Infrared Absorption Using Room-Temperature Quantum Cascade Lasers,” IEEE Sens. J. 10(1), 76–84 (2010).
[CrossRef] [PubMed]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogenous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[CrossRef]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

2009 (2)

G. Hancock, J. van Helden, R. Peverall, G. Ritchie, and R. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94(20), 201110 (2009).
[CrossRef]

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423K,” IEEE Photon. Lett. 21(12), 814–816 (2009).
[CrossRef]

2008 (5)

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Applications of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

N. Mukherjee, R. Go, C. Kumar, and N. Patel, “Linewidth measurement of external grating cavity quantum cascade laser using saturation spectroscopy,” Appl. Phys. Lett. 92(11), 111116 (2008).
[CrossRef]

N. Mukherjee and C. Patel, “Molecular fine structure and transition dipole moment of NO2 using an external cavity quantum cascade laser,” Chem. Phys. Lett. 462(1-3), 10–13 (2008).
[CrossRef]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the Intrinsic Linewidth of Quantum-Cascade Lasers: Hidden Reason for the Narrow Linewidth and Line-Broadening by Thermal Photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

2007 (2)

F. Bielsa, A. Douillet, T. Valenzuela, J. P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett. 32(12), 1641–1643 (2007).
[CrossRef] [PubMed]

G. Stancu, N. Lang, J. Röpcke, M. Reinicke, A. Steinbach, and S. Wege, “In Situ Monitoring of Silicon Plasma Etching Using a Quantum Cascade Laser Arrangement,” Chem. Vap. Deposition 13(6-7), 351–360 (2007).
[CrossRef]

2005 (2)

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

R. Maulini, D. A. Yarekha, J. M. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30(19), 2584–2586 (2005).
[CrossRef] [PubMed]

2002 (2)

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef]

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett. 27(24), 2164–2166 (2002).
[CrossRef]

1996 (1)

L. Viana, S. S. Vianna, M. Oriá, and J. W. Tabosa, “Diode laser mode selection using a long external cavity,” Appl. Opt. 35(3), 368–371 (1996).
[CrossRef] [PubMed]

1994 (1)

H. Kakiuchida and J. Ohtsubo, “Characteristics of a semiconductor laser with external feedback,” IEEE J. Quantum Electron. 30(9), 2087–2097 (1994).
[CrossRef]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[CrossRef]

Akikusa, N.

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the Intrinsic Linewidth of Quantum-Cascade Lasers: Hidden Reason for the Narrow Linewidth and Line-Broadening by Thermal Photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

Baillargeon, J. N.

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef]

Bakhirkin, Y.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Applications of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Bartalini, S.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Bielsa, F.

F. Bielsa, A. Douillet, T. Valenzuela, J. P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett. 32(12), 1641–1643 (2007).
[CrossRef] [PubMed]

Blaser, S.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423K,” IEEE Photon. Lett. 21(12), 814–816 (2009).
[CrossRef]

Bonetti, Y.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423K,” IEEE Photon. Lett. 21(12), 814–816 (2009).
[CrossRef]

Borri, S.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Bour, D.

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Bulliard, J.

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

Bulliard, J. M.

R. Maulini, D. A. Yarekha, J. M. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30(19), 2584–2586 (2005).
[CrossRef] [PubMed]

Cancio, P.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Cannon, B. D.

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett. 27(24), 2164–2166 (2002).
[CrossRef]

Capasso, F.

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett. 27(24), 2164–2166 (2002).
[CrossRef]

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef]

Castrillo, A.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Cho, A. Y.

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett. 27(24), 2164–2166 (2002).
[CrossRef]

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef]

Corzine, S.

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Curl, R.

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Applications of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

De Natale, P.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Diehl, L.

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Douillet, A.

F. Bielsa, A. Douillet, T. Valenzuela, J. P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett. 32(12), 1641–1643 (2007).
[CrossRef] [PubMed]

Edamura, T.

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogenous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[CrossRef]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the Intrinsic Linewidth of Quantum-Cascade Lasers: Hidden Reason for the Narrow Linewidth and Line-Broadening by Thermal Photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

Faist, J.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423K,” IEEE Photon. Lett. 21(12), 814–816 (2009).
[CrossRef]

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

R. Maulini, D. A. Yarekha, J. M. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30(19), 2584–2586 (2005).
[CrossRef] [PubMed]

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

Fischer, M.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423K,” IEEE Photon. Lett. 21(12), 814–816 (2009).
[CrossRef]

Fraser, M.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Applications of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Fujita, K.

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogenous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[CrossRef]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the Intrinsic Linewidth of Quantum-Cascade Lasers: Hidden Reason for the Narrow Linewidth and Line-Broadening by Thermal Photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

Furuta, S.

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogenous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[CrossRef]

Galli, I.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Gianfrani, L.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Gini, E.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423K,” IEEE Photon. Lett. 21(12), 814–816 (2009).
[CrossRef]

R. Maulini, D. A. Yarekha, J. M. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30(19), 2584–2586 (2005).
[CrossRef] [PubMed]

Giovannini, M.

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

R. Maulini, D. A. Yarekha, J. M. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30(19), 2584–2586 (2005).
[CrossRef] [PubMed]

Giusfredi, G.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Gmachl, C.

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef]

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett. 27(24), 2164–2166 (2002).
[CrossRef]

Go, R.

N. Mukherjee, R. Go, C. Kumar, and N. Patel, “Linewidth measurement of external grating cavity quantum cascade laser using saturation spectroscopy,” Appl. Phys. Lett. 92(11), 111116 (2008).
[CrossRef]

Hancock, G.

G. Hancock, J. van Helden, R. Peverall, G. Ritchie, and R. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94(20), 201110 (2009).
[CrossRef]

Hilico, L.

F. Bielsa, A. Douillet, T. Valenzuela, J. P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett. 32(12), 1641–1643 (2007).
[CrossRef] [PubMed]

Hofler, G.

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Kakiuchida, H.

H. Kakiuchida and J. Ohtsubo, “Characteristics of a semiconductor laser with external feedback,” IEEE J. Quantum Electron. 30(9), 2087–2097 (1994).
[CrossRef]

Kan, H.

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the Intrinsic Linewidth of Quantum-Cascade Lasers: Hidden Reason for the Narrow Linewidth and Line-Broadening by Thermal Photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

Karr, J. P.

F. Bielsa, A. Douillet, T. Valenzuela, J. P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett. 32(12), 1641–1643 (2007).
[CrossRef] [PubMed]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[CrossRef]

Kosterev, A.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Applications of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Kumar, C.

N. Mukherjee, R. Go, C. Kumar, and N. Patel, “Linewidth measurement of external grating cavity quantum cascade laser using saturation spectroscopy,” Appl. Phys. Lett. 92(11), 111116 (2008).
[CrossRef]

Lang, N.

G. Stancu, N. Lang, J. Röpcke, M. Reinicke, A. Steinbach, and S. Wege, “In Situ Monitoring of Silicon Plasma Etching Using a Quantum Cascade Laser Arrangement,” Chem. Vap. Deposition 13(6-7), 351–360 (2007).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[CrossRef]

Lewicki, R.

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Applications of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Maulini, R.

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

R. Maulini, D. A. Yarekha, J. M. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30(19), 2584–2586 (2005).
[CrossRef] [PubMed]

Mazzotti, D.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

McManus, J. B.

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, and D. K. Milton, “Multicomponent Breath Analysis With Infrared Absorption Using Room-Temperature Quantum Cascade Lasers,” IEEE Sens. J. 10(1), 76–84 (2010).
[CrossRef] [PubMed]

Milton, D. K.

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, and D. K. Milton, “Multicomponent Breath Analysis With Infrared Absorption Using Room-Temperature Quantum Cascade Lasers,” IEEE Sens. J. 10(1), 76–84 (2010).
[CrossRef] [PubMed]

Mukherjee, N.

N. Mukherjee and C. Patel, “Molecular fine structure and transition dipole moment of NO2 using an external cavity quantum cascade laser,” Chem. Phys. Lett. 462(1-3), 10–13 (2008).
[CrossRef]

N. Mukherjee, R. Go, C. Kumar, and N. Patel, “Linewidth measurement of external grating cavity quantum cascade laser using saturation spectroscopy,” Appl. Phys. Lett. 92(11), 111116 (2008).
[CrossRef]

Myers, T. L.

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef]

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett. 27(24), 2164–2166 (2002).
[CrossRef]

Nelson, D. D.

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, and D. K. Milton, “Multicomponent Breath Analysis With Infrared Absorption Using Room-Temperature Quantum Cascade Lasers,” IEEE Sens. J. 10(1), 76–84 (2010).
[CrossRef] [PubMed]

Ohtsubo, J.

H. Kakiuchida and J. Ohtsubo, “Characteristics of a semiconductor laser with external feedback,” IEEE J. Quantum Electron. 30(9), 2087–2097 (1994).
[CrossRef]

Oriá, M.

L. Viana, S. S. Vianna, M. Oriá, and J. W. Tabosa, “Diode laser mode selection using a long external cavity,” Appl. Opt. 35(3), 368–371 (1996).
[CrossRef] [PubMed]

Patel, C.

N. Mukherjee and C. Patel, “Molecular fine structure and transition dipole moment of NO2 using an external cavity quantum cascade laser,” Chem. Phys. Lett. 462(1-3), 10–13 (2008).
[CrossRef]

Patel, N.

N. Mukherjee, R. Go, C. Kumar, and N. Patel, “Linewidth measurement of external grating cavity quantum cascade laser using saturation spectroscopy,” Appl. Phys. Lett. 92(11), 111116 (2008).
[CrossRef]

Peverall, R.

G. Hancock, J. van Helden, R. Peverall, G. Ritchie, and R. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94(20), 201110 (2009).
[CrossRef]

Reinicke, M.

G. Stancu, N. Lang, J. Röpcke, M. Reinicke, A. Steinbach, and S. Wege, “In Situ Monitoring of Silicon Plasma Etching Using a Quantum Cascade Laser Arrangement,” Chem. Vap. Deposition 13(6-7), 351–360 (2007).
[CrossRef]

Ritchie, G.

G. Hancock, J. van Helden, R. Peverall, G. Ritchie, and R. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94(20), 201110 (2009).
[CrossRef]

Röpcke, J.

G. Stancu, N. Lang, J. Röpcke, M. Reinicke, A. Steinbach, and S. Wege, “In Situ Monitoring of Silicon Plasma Etching Using a Quantum Cascade Laser Arrangement,” Chem. Vap. Deposition 13(6-7), 351–360 (2007).
[CrossRef]

Shorter, J. H.

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, and D. K. Milton, “Multicomponent Breath Analysis With Infrared Absorption Using Room-Temperature Quantum Cascade Lasers,” IEEE Sens. J. 10(1), 76–84 (2010).
[CrossRef] [PubMed]

Sivco, D. L.

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef]

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett. 27(24), 2164–2166 (2002).
[CrossRef]

So, S.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Applications of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

Stancu, G.

G. Stancu, N. Lang, J. Röpcke, M. Reinicke, A. Steinbach, and S. Wege, “In Situ Monitoring of Silicon Plasma Etching Using a Quantum Cascade Laser Arrangement,” Chem. Vap. Deposition 13(6-7), 351–360 (2007).
[CrossRef]

Steinbach, A.

G. Stancu, N. Lang, J. Röpcke, M. Reinicke, A. Steinbach, and S. Wege, “In Situ Monitoring of Silicon Plasma Etching Using a Quantum Cascade Laser Arrangement,” Chem. Vap. Deposition 13(6-7), 351–360 (2007).
[CrossRef]

Tabosa, J. W.

L. Viana, S. S. Vianna, M. Oriá, and J. W. Tabosa, “Diode laser mode selection using a long external cavity,” Appl. Opt. 35(3), 368–371 (1996).
[CrossRef] [PubMed]

Taubman, M. S.

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett. 27(24), 2164–2166 (2002).
[CrossRef]

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef]

Tittel, F.

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Applications of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

Troccoli, M.

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Valenzuela, T.

F. Bielsa, A. Douillet, T. Valenzuela, J. P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett. 32(12), 1641–1643 (2007).
[CrossRef] [PubMed]

van Helden, J.

G. Hancock, J. van Helden, R. Peverall, G. Ritchie, and R. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94(20), 201110 (2009).
[CrossRef]

Viana, L.

L. Viana, S. S. Vianna, M. Oriá, and J. W. Tabosa, “Diode laser mode selection using a long external cavity,” Appl. Opt. 35(3), 368–371 (1996).
[CrossRef] [PubMed]

Vianna, S. S.

L. Viana, S. S. Vianna, M. Oriá, and J. W. Tabosa, “Diode laser mode selection using a long external cavity,” Appl. Opt. 35(3), 368–371 (1996).
[CrossRef] [PubMed]

Walker, R.

G. Hancock, J. van Helden, R. Peverall, G. Ritchie, and R. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94(20), 201110 (2009).
[CrossRef]

Wege, S.

G. Stancu, N. Lang, J. Röpcke, M. Reinicke, A. Steinbach, and S. Wege, “In Situ Monitoring of Silicon Plasma Etching Using a Quantum Cascade Laser Arrangement,” Chem. Vap. Deposition 13(6-7), 351–360 (2007).
[CrossRef]

Williams, R. M.

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef]

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett. 27(24), 2164–2166 (2002).
[CrossRef]

Wittmann, A.

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423K,” IEEE Photon. Lett. 21(12), 814–816 (2009).
[CrossRef]

Wysocki, G.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Applications of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

Yamanishi, M.

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogenous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[CrossRef]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the Intrinsic Linewidth of Quantum-Cascade Lasers: Hidden Reason for the Narrow Linewidth and Line-Broadening by Thermal Photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

Yarekha, D. A.

R. Maulini, D. A. Yarekha, J. M. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30(19), 2584–2586 (2005).
[CrossRef] [PubMed]

Zahniser, M. S.

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, and D. K. Milton, “Multicomponent Breath Analysis With Infrared Absorption Using Room-Temperature Quantum Cascade Lasers,” IEEE Sens. J. 10(1), 76–84 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

L. Viana, S. S. Vianna, M. Oriá, and J. W. Tabosa, “Diode laser mode selection using a long external cavity,” Appl. Opt. 35(3), 368–371 (1996).
[CrossRef] [PubMed]

Appl. Phys. B (3)

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Applications of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[CrossRef]

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81(6), 769–777 (2005).
[CrossRef]

G. Wysocki, R. Lewicki, R. Curl, F. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogenous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett. 96(24), 241107 (2010).
[CrossRef]

N. Mukherjee, R. Go, C. Kumar, and N. Patel, “Linewidth measurement of external grating cavity quantum cascade laser using saturation spectroscopy,” Appl. Phys. Lett. 92(11), 111116 (2008).
[CrossRef]

G. Hancock, J. van Helden, R. Peverall, G. Ritchie, and R. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94(20), 201110 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

N. Mukherjee and C. Patel, “Molecular fine structure and transition dipole moment of NO2 using an external cavity quantum cascade laser,” Chem. Phys. Lett. 462(1-3), 10–13 (2008).
[CrossRef]

Chem. Vap. Deposition (1)

G. Stancu, N. Lang, J. Röpcke, M. Reinicke, A. Steinbach, and S. Wege, “In Situ Monitoring of Silicon Plasma Etching Using a Quantum Cascade Laser Arrangement,” Chem. Vap. Deposition 13(6-7), 351–360 (2007).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[CrossRef]

H. Kakiuchida and J. Ohtsubo, “Characteristics of a semiconductor laser with external feedback,” IEEE J. Quantum Electron. 30(9), 2087–2097 (1994).
[CrossRef]

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the Intrinsic Linewidth of Quantum-Cascade Lasers: Hidden Reason for the Narrow Linewidth and Line-Broadening by Thermal Photons,” IEEE J. Quantum Electron. 44(1), 12–29 (2008).
[CrossRef]

IEEE Photon. Lett. (1)

A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-Feedback Quantum Cascade Lasers at 9 μm Operating in Continuous Wave Up to 423K,” IEEE Photon. Lett. 21(12), 814–816 (2009).
[CrossRef]

IEEE Sens. J. (1)

J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, and D. K. Milton, “Multicomponent Breath Analysis With Infrared Absorption Using Room-Temperature Quantum Cascade Lasers,” IEEE Sens. J. 10(1), 76–84 (2010).
[CrossRef] [PubMed]

Opt. Lett. (4)

R. Maulini, D. A. Yarekha, J. M. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30(19), 2584–2586 (2005).
[CrossRef] [PubMed]

F. Bielsa, A. Douillet, T. Valenzuela, J. P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett. 32(12), 1641–1643 (2007).
[CrossRef] [PubMed]

T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett. 27(3), 170–172 (2002).
[CrossRef]

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett. 27(24), 2164–2166 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Photograph of the EC-QC laser. (b) Block diagram representation of the EC-QC laser setup.

Fig. 2
Fig. 2

(a). Multi-mode spectrum of the FP-QC laser without optical feedback taken at 10% above current threshold. (b) Single-mode spectrum of the FP-QC laser with optical feedback from a ZnSe partial-reflector taken at 10% above current threshold. (c) Single-mode light-current (L-I) characteristics of the EC-QC laser for various external cavity partial-reflectors. The FP-QC laser (no partial-reflector) L-I characteristics are also given for comparison.

Fig. 3
Fig. 3

Three dimensional mode-map of the EC-QC laser single-mode operation and mode-hop free tuning at various starting wavelengths. The FP-QC laser current and EC length were synchronously adjusted (blue line on base plane) to tune the EC-QC laser wavelength over a maximum mode-hop free tuning range of 2.46 cm−1. The collective tuning range is 4.68 cm−1.

Fig. 4
Fig. 4

(a) NH3 lineshape in terms of detector voltage obtained by scanning the EC-QC laser over the absorption line. The absorption was purposely saturated to magnify the wavelength fluctuations in terms of detector voltage. (b) Time series data set of detector voltage fluctuations for a 1 second integration time collected while the EC-QC laser frequency was on the side of the NH3 absorption line. (c) Distribution of the EC-QC laser's frequency fluctuations for 1 ms and 1 second integration times.

Fig. 5
Fig. 5

Experimentally-obtained full-width at half maximum (FHWM) EC-QC laser linewidth for DC coupled integration times from 100 µs to 4 seconds. A DFB-QC laser with a similar wavelength was measured using the same technique. The increases in EC-QC laser linewidth at 1 ms and both FP-QC and EC-QC laser linewidths at 1 second are attributed to acoustic vibrations and thermal drifts, respectively.

Metrics