Abstract

Cerebral palsy (CP) is the most common motor disorder in children. Currently available neuroimaging techniques require complete body confinement and steadiness and thus are extremely difficult for pediatric patients. Here, we report the use and quantification of functional near infrared spectroscopy (fNIRS) to investigate the functional reorganization of the sensorimotor cortex in children with hemiparetic CP. Ten of sixteen children with congenital hemiparesis were measured during finger tapping tasks and compared with eight of sixteen age-matched healthy children, with an overall measurement success rate of 60%. Spatiotemporal analysis was introduced to quantify the motor activation and brain laterality. Such a quantitative approach reveals a consistent, contralateral motor activation in healthy children at 7 years of age or older. In sharp contrast, children with congenital hemiparesis exhibit all three of contralateral, bilateral and ipsilateral motor activations, depending on specific ages of the pediatric subjects. This study clearly demonstrates the feasibility of fNIRS to be utilized for investigating cortical reorganization in children with CP or other cortical disorders.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bax, M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, D. Damiano, and Executive Committee for the Definition of Cerebral Palsy, “Proposed definition and classification of cerebral palsy, April 2005,” Dev. Med. Child Neurol. 47(8), 571–576 (2005).
    [CrossRef] [PubMed]
  2. M. V. Johnston and A. H. Hoon., “Cerebral palsy,” Neuromolecular Med. 8(4), 435–450 (2006).
    [CrossRef] [PubMed]
  3. I. Krägeloh-Mann and C. Cans, “Cerebral palsy update,” Brain Dev. 31(7), 537–544 (2009).
    [CrossRef] [PubMed]
  4. B. Hagberg, G. Hagberg, E. Beckung, and P. Uvebrant, “Changing panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth year period 1991-94,” Acta Paediatr. 90(3), 271–277 (2001).
    [CrossRef] [PubMed]
  5. S. A. Back, “Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms,” Ment. Retard. Dev. Disabil. Res. Rev. 12(2), 129–140 (2006).
    [CrossRef] [PubMed]
  6. S. F. Farmer, L. M. Harrison, D. A. Ingram, and J. A. Stephens, “Plasticity of central motor pathways in children with hemiplegic cerebral palsy,” Neurology 41(9), 1505–1510 (1991).
    [PubMed]
  7. L. J. Carr, L. M. Harrison, A. L. Evans, and J. A. Stephens, “Patterns of central motor reorganization in hemiplegic cerebral palsy,” Brain 116(5), 1223–1247 (1993).
    [CrossRef] [PubMed]
  8. J. Accardo, H. Kammann, and A. H. Hoon., “Neuroimaging in cerebral palsy,” J. Pediatr. 145(2Suppl), S19–S27 (2004).
    [CrossRef] [PubMed]
  9. A. M. S. G. Piovesana, M. V. L. Moura-Ribeiro, V. A. Zanardi, and V. M. G. Gonçalves, “Hemiparetic cerebral palsy: etiological risk factors and neuroimaging,” Arq. Neuropsiquiatr. 59(1), 29–34 (2001).
    [CrossRef] [PubMed]
  10. S. J. Korzeniewski, G. Birbeck, M. C. DeLano, M. J. Potchen, and N. Paneth, “A systematic review of neuroimaging for cerebral palsy,” J. Child Neurol. 23(2), 216–227 (2007).
    [CrossRef]
  11. A. Sööt, T. Tomberg, P. Kool, R. Rein, and T. Talvik, “Magnetic resonance imaging in children with bilateral spastic forms of cerebral palsy,” Pediatr. Neurol. 38(5), 321–328 (2008).
    [CrossRef] [PubMed]
  12. Y. Vandermeeren, G. Sébire, C. B. Grandin, J. L. Thonnard, X. Schlögel, and A. G. De Volder, “Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study,” Neuroimage 20(1), 289–301 (2003).
    [CrossRef] [PubMed]
  13. S. H. You, S. H. Jang, Y. H. Kim, Y. H. Kwon, I. Barrow, and M. Hallett, “Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy,” Dev. Med. Child Neurol. 47(9), 628–635 (2005).
    [PubMed]
  14. R. Trivedi, R. K. Gupta, V. Shah, M. Tripathi, R. K. S. Rathore, M. Kumar, C. M. Pandey, and P. A. Narayana, “Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study,” Pediatr. Neurol. 39(5), 341–349 (2008).
    [CrossRef] [PubMed]
  15. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20(10), 435–442 (1997).
    [CrossRef] [PubMed]
  16. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(1Suppl 1), S275–S288 (2004).
    [CrossRef] [PubMed]
  17. F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
    [CrossRef] [PubMed]
  18. B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
    [CrossRef] [PubMed]
  19. A. C. Eliasson, L. Krumlinde-Sundholm, B. Rösblad, E. Beckung, M. Arner, A. M. Ohrvall, and P. Rosenbaum, “The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability,” Dev. Med. Child Neurol. 48(7), 549–554 (2006).
    [CrossRef] [PubMed]
  20. C. Morris, J. J. Kurinczuk, R. Fitzpatrick, and P. L. Rosenbaum, “Reliability of the manual ability classification system for children with cerebral palsy,” Dev. Med. Child Neurol. 48(12), 950–953 (2006).
    [CrossRef] [PubMed]
  21. D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29(13), 1506–1508 (2004).
    [CrossRef] [PubMed]
  22. T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
    [CrossRef] [PubMed]
  23. M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt, and P. van der Zee, “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183–189 (1988).
    [PubMed]
  24. L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51(5), N91–N98 (2006).
    [CrossRef] [PubMed]
  25. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [CrossRef]
  26. S. A. Walker, S. Fantini, and E. Gratton, “Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media,” Appl. Opt. 36(1), 170–174 (1997).
    [CrossRef] [PubMed]
  27. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
    [CrossRef] [PubMed]
  28. E. R. Hom, http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm .
  29. G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas, “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy,” Neuroimage 20(1), 479–488 (2003).
    [CrossRef] [PubMed]
  30. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
    [CrossRef]
  31. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
    [CrossRef] [PubMed]
  32. A. Solodkin, P. Hlustik, D. C. Noll, and S. L. Small, “Lateralization of motor circuits and handedness during finger movements,” Eur. J. Neurol. 8(5), 425–434 (2001).
    [CrossRef] [PubMed]
  33. M. M. Plichta, M. J. Herrmann, C. G. Baehne, A. C. Ehlis, M. M. Richter, P. Pauli, and A. J. Fallgatter, “Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?” Neuroimage 31(1), 116–124 (2006).
    [CrossRef] [PubMed]
  34. T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007).
    [CrossRef] [PubMed]
  35. B. Khan, F. Tian, M. I. Romero, H. Liu, G. Alexandrakis, L. Smith, N. J. Clegg, M. R. Delgado, C. Wildey, and D. L. MacFarlane, “Functional near infrared brain imaging with a brush-fiber optode array to improve study success rates on pediatric subjects with cerebral palsy,” submitted to SPIE Photonics West (2010).
  36. F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt. 48(13), 2496–2504 (2009).
    [CrossRef] [PubMed]
  37. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
    [CrossRef] [PubMed]
  38. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
    [CrossRef] [PubMed]
  39. C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
    [CrossRef]
  40. M. Staudt, W. Grodd, C. Gerloff, M. Erb, J. Stitz, and I. Krägeloh-Mann, “Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study,” Brain 125(10), 2222–2237 (2002).
    [CrossRef] [PubMed]
  41. Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007).
    [CrossRef] [PubMed]
  42. Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009).
    [CrossRef] [PubMed]
  43. F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt. 14(5), 054016 (2009).
    [CrossRef] [PubMed]
  44. F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303, 120–130 (2009).
    [CrossRef] [PubMed]
  45. I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol. 614, 21–28 (2008).
    [CrossRef] [PubMed]
  46. I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol. 614, 397–403 (2008).
    [CrossRef] [PubMed]
  47. I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
    [CrossRef] [PubMed]

2010

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[CrossRef]

2009

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009).
[CrossRef] [PubMed]

F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt. 14(5), 054016 (2009).
[CrossRef] [PubMed]

F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303, 120–130 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[CrossRef] [PubMed]

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[CrossRef] [PubMed]

F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt. 48(13), 2496–2504 (2009).
[CrossRef] [PubMed]

I. Krägeloh-Mann and C. Cans, “Cerebral palsy update,” Brain Dev. 31(7), 537–544 (2009).
[CrossRef] [PubMed]

2008

A. Sööt, T. Tomberg, P. Kool, R. Rein, and T. Talvik, “Magnetic resonance imaging in children with bilateral spastic forms of cerebral palsy,” Pediatr. Neurol. 38(5), 321–328 (2008).
[CrossRef] [PubMed]

R. Trivedi, R. K. Gupta, V. Shah, M. Tripathi, R. K. S. Rathore, M. Kumar, C. M. Pandey, and P. A. Narayana, “Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study,” Pediatr. Neurol. 39(5), 341–349 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol. 614, 21–28 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol. 614, 397–403 (2008).
[CrossRef] [PubMed]

2007

T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007).
[CrossRef] [PubMed]

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007).
[CrossRef] [PubMed]

S. J. Korzeniewski, G. Birbeck, M. C. DeLano, M. J. Potchen, and N. Paneth, “A systematic review of neuroimaging for cerebral palsy,” J. Child Neurol. 23(2), 216–227 (2007).
[CrossRef]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[CrossRef] [PubMed]

2006

M. M. Plichta, M. J. Herrmann, C. G. Baehne, A. C. Ehlis, M. M. Richter, P. Pauli, and A. J. Fallgatter, “Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?” Neuroimage 31(1), 116–124 (2006).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef]

L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51(5), N91–N98 (2006).
[CrossRef] [PubMed]

A. C. Eliasson, L. Krumlinde-Sundholm, B. Rösblad, E. Beckung, M. Arner, A. M. Ohrvall, and P. Rosenbaum, “The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability,” Dev. Med. Child Neurol. 48(7), 549–554 (2006).
[CrossRef] [PubMed]

C. Morris, J. J. Kurinczuk, R. Fitzpatrick, and P. L. Rosenbaum, “Reliability of the manual ability classification system for children with cerebral palsy,” Dev. Med. Child Neurol. 48(12), 950–953 (2006).
[CrossRef] [PubMed]

M. V. Johnston and A. H. Hoon., “Cerebral palsy,” Neuromolecular Med. 8(4), 435–450 (2006).
[CrossRef] [PubMed]

S. A. Back, “Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms,” Ment. Retard. Dev. Disabil. Res. Rev. 12(2), 129–140 (2006).
[CrossRef] [PubMed]

2005

M. Bax, M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, D. Damiano, and Executive Committee for the Definition of Cerebral Palsy, “Proposed definition and classification of cerebral palsy, April 2005,” Dev. Med. Child Neurol. 47(8), 571–576 (2005).
[CrossRef] [PubMed]

S. H. You, S. H. Jang, Y. H. Kim, Y. H. Kwon, I. Barrow, and M. Hallett, “Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy,” Dev. Med. Child Neurol. 47(9), 628–635 (2005).
[PubMed]

2004

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(1Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

J. Accardo, H. Kammann, and A. H. Hoon., “Neuroimaging in cerebral palsy,” J. Pediatr. 145(2Suppl), S19–S27 (2004).
[CrossRef] [PubMed]

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29(13), 1506–1508 (2004).
[CrossRef] [PubMed]

2003

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas, “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy,” Neuroimage 20(1), 479–488 (2003).
[CrossRef] [PubMed]

Y. Vandermeeren, G. Sébire, C. B. Grandin, J. L. Thonnard, X. Schlögel, and A. G. De Volder, “Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study,” Neuroimage 20(1), 289–301 (2003).
[CrossRef] [PubMed]

2002

M. Staudt, W. Grodd, C. Gerloff, M. Erb, J. Stitz, and I. Krägeloh-Mann, “Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study,” Brain 125(10), 2222–2237 (2002).
[CrossRef] [PubMed]

2001

A. M. S. G. Piovesana, M. V. L. Moura-Ribeiro, V. A. Zanardi, and V. M. G. Gonçalves, “Hemiparetic cerebral palsy: etiological risk factors and neuroimaging,” Arq. Neuropsiquiatr. 59(1), 29–34 (2001).
[CrossRef] [PubMed]

B. Hagberg, G. Hagberg, E. Beckung, and P. Uvebrant, “Changing panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth year period 1991-94,” Acta Paediatr. 90(3), 271–277 (2001).
[CrossRef] [PubMed]

A. Solodkin, P. Hlustik, D. C. Noll, and S. L. Small, “Lateralization of motor circuits and handedness during finger movements,” Eur. J. Neurol. 8(5), 425–434 (2001).
[CrossRef] [PubMed]

1999

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

1997

S. A. Walker, S. Fantini, and E. Gratton, “Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media,” Appl. Opt. 36(1), 170–174 (1997).
[CrossRef] [PubMed]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20(10), 435–442 (1997).
[CrossRef] [PubMed]

1993

L. J. Carr, L. M. Harrison, A. L. Evans, and J. A. Stephens, “Patterns of central motor reorganization in hemiplegic cerebral palsy,” Brain 116(5), 1223–1247 (1993).
[CrossRef] [PubMed]

1991

S. F. Farmer, L. M. Harrison, D. A. Ingram, and J. A. Stephens, “Plasticity of central motor pathways in children with hemiplegic cerebral palsy,” Neurology 41(9), 1505–1510 (1991).
[PubMed]

1988

M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt, and P. van der Zee, “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183–189 (1988).
[PubMed]

Accardo, J.

J. Accardo, H. Kammann, and A. H. Hoon., “Neuroimaging in cerebral palsy,” J. Pediatr. 145(2Suppl), S19–S27 (2004).
[CrossRef] [PubMed]

Alexandrakis, G.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt. 48(13), 2496–2504 (2009).
[CrossRef] [PubMed]

Arner, M.

A. C. Eliasson, L. Krumlinde-Sundholm, B. Rösblad, E. Beckung, M. Arner, A. M. Ohrvall, and P. Rosenbaum, “The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability,” Dev. Med. Child Neurol. 48(7), 549–554 (2006).
[CrossRef] [PubMed]

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

Back, S. A.

S. A. Back, “Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms,” Ment. Retard. Dev. Disabil. Res. Rev. 12(2), 129–140 (2006).
[CrossRef] [PubMed]

Baehne, C. G.

M. M. Plichta, M. J. Herrmann, C. G. Baehne, A. C. Ehlis, M. M. Richter, P. Pauli, and A. J. Fallgatter, “Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?” Neuroimage 31(1), 116–124 (2006).
[CrossRef] [PubMed]

Barrow, I.

S. H. You, S. H. Jang, Y. H. Kim, Y. H. Kwon, I. Barrow, and M. Hallett, “Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy,” Dev. Med. Child Neurol. 47(9), 628–635 (2005).
[PubMed]

Bax, M.

M. Bax, M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, D. Damiano, and Executive Committee for the Definition of Cerebral Palsy, “Proposed definition and classification of cerebral palsy, April 2005,” Dev. Med. Child Neurol. 47(8), 571–576 (2005).
[CrossRef] [PubMed]

Beckung, E.

A. C. Eliasson, L. Krumlinde-Sundholm, B. Rösblad, E. Beckung, M. Arner, A. M. Ohrvall, and P. Rosenbaum, “The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability,” Dev. Med. Child Neurol. 48(7), 549–554 (2006).
[CrossRef] [PubMed]

B. Hagberg, G. Hagberg, E. Beckung, and P. Uvebrant, “Changing panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth year period 1991-94,” Acta Paediatr. 90(3), 271–277 (2001).
[CrossRef] [PubMed]

Behbehani, K.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Birbeck, G.

S. J. Korzeniewski, G. Birbeck, M. C. DeLano, M. J. Potchen, and N. Paneth, “A systematic review of neuroimaging for cerebral palsy,” J. Child Neurol. 23(2), 216–227 (2007).
[CrossRef]

Biswal, B. B.

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[CrossRef]

Boas, D. A.

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(1Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29(13), 1506–1508 (2004).
[CrossRef] [PubMed]

G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas, “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy,” Neuroimage 20(1), 479–488 (2003).
[CrossRef] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

Brown, E. N.

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007).
[CrossRef] [PubMed]

Bunce, S.

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[CrossRef] [PubMed]

Cans, C.

I. Krägeloh-Mann and C. Cans, “Cerebral palsy update,” Brain Dev. 31(7), 537–544 (2009).
[CrossRef] [PubMed]

Carr, L. J.

L. J. Carr, L. M. Harrison, A. L. Evans, and J. A. Stephens, “Patterns of central motor reorganization in hemiplegic cerebral palsy,” Brain 116(5), 1223–1247 (1993).
[CrossRef] [PubMed]

Chance, B.

F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt. 14(5), 054016 (2009).
[CrossRef] [PubMed]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20(10), 435–442 (1997).
[CrossRef] [PubMed]

Chen, K.

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29(13), 1506–1508 (2004).
[CrossRef] [PubMed]

Chopra, A.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[CrossRef] [PubMed]

Chute, D.

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[CrossRef] [PubMed]

Clegg, N. J.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Cohen, A. L.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

Cope, M.

M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt, and P. van der Zee, “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183–189 (1988).
[PubMed]

Culver, J. P.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Dale, A. M.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(1Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Damiano, D.

M. Bax, M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, D. Damiano, and Executive Committee for the Definition of Cerebral Palsy, “Proposed definition and classification of cerebral palsy, April 2005,” Dev. Med. Child Neurol. 47(8), 571–576 (2005).
[CrossRef] [PubMed]

Dan, B.

M. Bax, M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, D. Damiano, and Executive Committee for the Definition of Cerebral Palsy, “Proposed definition and classification of cerebral palsy, April 2005,” Dev. Med. Child Neurol. 47(8), 571–576 (2005).
[CrossRef] [PubMed]

De Volder, A. G.

Y. Vandermeeren, G. Sébire, C. B. Grandin, J. L. Thonnard, X. Schlögel, and A. G. De Volder, “Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study,” Neuroimage 20(1), 289–301 (2003).
[CrossRef] [PubMed]

Dehghani, H.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

DeLano, M. C.

S. J. Korzeniewski, G. Birbeck, M. C. DeLano, M. J. Potchen, and N. Paneth, “A systematic review of neuroimaging for cerebral palsy,” J. Child Neurol. 23(2), 216–227 (2007).
[CrossRef]

Delgado, M. R.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Delpy, D. T.

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol. 614, 397–403 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol. 614, 21–28 (2008).
[CrossRef] [PubMed]

M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt, and P. van der Zee, “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183–189 (1988).
[PubMed]

Devendra, P.

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol. 614, 21–28 (2008).
[CrossRef] [PubMed]

Devoto, L.

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol. 614, 397–403 (2008).
[CrossRef] [PubMed]

Diamond, S. G.

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef]

Ehlis, A. C.

M. M. Plichta, M. J. Herrmann, C. G. Baehne, A. C. Ehlis, M. M. Richter, P. Pauli, and A. J. Fallgatter, “Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?” Neuroimage 31(1), 116–124 (2006).
[CrossRef] [PubMed]

Eke, A.

L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51(5), N91–N98 (2006).
[CrossRef] [PubMed]

Eliasson, A. C.

A. C. Eliasson, L. Krumlinde-Sundholm, B. Rösblad, E. Beckung, M. Arner, A. M. Ohrvall, and P. Rosenbaum, “The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability,” Dev. Med. Child Neurol. 48(7), 549–554 (2006).
[CrossRef] [PubMed]

Elwell, C. E.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol. 614, 21–28 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol. 614, 397–403 (2008).
[CrossRef] [PubMed]

Erb, M.

M. Staudt, W. Grodd, C. Gerloff, M. Erb, J. Stitz, and I. Krägeloh-Mann, “Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study,” Brain 125(10), 2222–2237 (2002).
[CrossRef] [PubMed]

Evans, A. L.

L. J. Carr, L. M. Harrison, A. L. Evans, and J. A. Stephens, “Patterns of central motor reorganization in hemiplegic cerebral palsy,” Brain 116(5), 1223–1247 (1993).
[CrossRef] [PubMed]

Fallgatter, A. J.

M. M. Plichta, M. J. Herrmann, C. G. Baehne, A. C. Ehlis, M. M. Richter, P. Pauli, and A. J. Fallgatter, “Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?” Neuroimage 31(1), 116–124 (2006).
[CrossRef] [PubMed]

Fantini, S.

S. A. Walker, S. Fantini, and E. Gratton, “Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media,” Appl. Opt. 36(1), 170–174 (1997).
[CrossRef] [PubMed]

Farmer, S. F.

S. F. Farmer, L. M. Harrison, D. A. Ingram, and J. A. Stephens, “Plasticity of central motor pathways in children with hemiplegic cerebral palsy,” Neurology 41(9), 1505–1510 (1991).
[PubMed]

Fitzpatrick, R.

C. Morris, J. J. Kurinczuk, R. Fitzpatrick, and P. L. Rosenbaum, “Reliability of the manual ability classification system for children with cerebral palsy,” Dev. Med. Child Neurol. 48(12), 950–953 (2006).
[CrossRef] [PubMed]

Franceschini, M. A.

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(1Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29(13), 1506–1508 (2004).
[CrossRef] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

Ganis, G.

Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009).
[CrossRef] [PubMed]

Gerloff, C.

M. Staudt, W. Grodd, C. Gerloff, M. Erb, J. Stitz, and I. Krägeloh-Mann, “Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study,” Brain 125(10), 2222–2237 (2002).
[CrossRef] [PubMed]

Goldstein, M.

M. Bax, M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, D. Damiano, and Executive Committee for the Definition of Cerebral Palsy, “Proposed definition and classification of cerebral palsy, April 2005,” Dev. Med. Child Neurol. 47(8), 571–576 (2005).
[CrossRef] [PubMed]

Gonçalves, V. M. G.

A. M. S. G. Piovesana, M. V. L. Moura-Ribeiro, V. A. Zanardi, and V. M. G. Gonçalves, “Hemiparetic cerebral palsy: etiological risk factors and neuroimaging,” Arq. Neuropsiquiatr. 59(1), 29–34 (2001).
[CrossRef] [PubMed]

Grandin, C. B.

Y. Vandermeeren, G. Sébire, C. B. Grandin, J. L. Thonnard, X. Schlögel, and A. G. De Volder, “Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study,” Neuroimage 20(1), 289–301 (2003).
[CrossRef] [PubMed]

Gratton, E.

S. A. Walker, S. Fantini, and E. Gratton, “Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media,” Appl. Opt. 36(1), 170–174 (1997).
[CrossRef] [PubMed]

Grebert, D.

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29(13), 1506–1508 (2004).
[CrossRef] [PubMed]

Grodd, W.

M. Staudt, W. Grodd, C. Gerloff, M. Erb, J. Stitz, and I. Krägeloh-Mann, “Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study,” Brain 125(10), 2222–2237 (2002).
[CrossRef] [PubMed]

Gupta, R. K.

R. Trivedi, R. K. Gupta, V. Shah, M. Tripathi, R. K. S. Rathore, M. Kumar, C. M. Pandey, and P. A. Narayana, “Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study,” Pediatr. Neurol. 39(5), 341–349 (2008).
[CrossRef] [PubMed]

Hagberg, B.

B. Hagberg, G. Hagberg, E. Beckung, and P. Uvebrant, “Changing panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth year period 1991-94,” Acta Paediatr. 90(3), 271–277 (2001).
[CrossRef] [PubMed]

Hagberg, G.

B. Hagberg, G. Hagberg, E. Beckung, and P. Uvebrant, “Changing panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth year period 1991-94,” Acta Paediatr. 90(3), 271–277 (2001).
[CrossRef] [PubMed]

Hallett, M.

S. H. You, S. H. Jang, Y. H. Kim, Y. H. Kwon, I. Barrow, and M. Hallett, “Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy,” Dev. Med. Child Neurol. 47(9), 628–635 (2005).
[PubMed]

Harrison, L. M.

L. J. Carr, L. M. Harrison, A. L. Evans, and J. A. Stephens, “Patterns of central motor reorganization in hemiplegic cerebral palsy,” Brain 116(5), 1223–1247 (1993).
[CrossRef] [PubMed]

S. F. Farmer, L. M. Harrison, D. A. Ingram, and J. A. Stephens, “Plasticity of central motor pathways in children with hemiplegic cerebral palsy,” Neurology 41(9), 1505–1510 (1991).
[PubMed]

Herman, P.

L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51(5), N91–N98 (2006).
[CrossRef] [PubMed]

Herrmann, M. J.

M. M. Plichta, M. J. Herrmann, C. G. Baehne, A. C. Ehlis, M. M. Richter, P. Pauli, and A. J. Fallgatter, “Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?” Neuroimage 31(1), 116–124 (2006).
[CrossRef] [PubMed]

Hlustik, P.

A. Solodkin, P. Hlustik, D. C. Noll, and S. L. Small, “Lateralization of motor circuits and handedness during finger movements,” Eur. J. Neurol. 8(5), 425–434 (2001).
[CrossRef] [PubMed]

Hoge, R. D.

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef]

Hoon, A. H.

M. V. Johnston and A. H. Hoon., “Cerebral palsy,” Neuromolecular Med. 8(4), 435–450 (2006).
[CrossRef] [PubMed]

J. Accardo, H. Kammann, and A. H. Hoon., “Neuroimaging in cerebral palsy,” J. Pediatr. 145(2Suppl), S19–S27 (2004).
[CrossRef] [PubMed]

Huppert, T. J.

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef]

Ingram, D. A.

S. F. Farmer, L. M. Harrison, D. A. Ingram, and J. A. Stephens, “Plasticity of central motor pathways in children with hemiplegic cerebral palsy,” Neurology 41(9), 1505–1510 (1991).
[PubMed]

Irani, F.

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[CrossRef] [PubMed]

Jacobsson, B.

M. Bax, M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, D. Damiano, and Executive Committee for the Definition of Cerebral Palsy, “Proposed definition and classification of cerebral palsy, April 2005,” Dev. Med. Child Neurol. 47(8), 571–576 (2005).
[CrossRef] [PubMed]

Jang, S. H.

S. H. You, S. H. Jang, Y. H. Kim, Y. H. Kwon, I. Barrow, and M. Hallett, “Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy,” Dev. Med. Child Neurol. 47(9), 628–635 (2005).
[PubMed]

Jasdzewski, G.

G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas, “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy,” Neuroimage 20(1), 479–488 (2003).
[CrossRef] [PubMed]

Johnston, M. V.

M. V. Johnston and A. H. Hoon., “Cerebral palsy,” Neuromolecular Med. 8(4), 435–450 (2006).
[CrossRef] [PubMed]

Joseph, D. K.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

Kammann, H.

J. Accardo, H. Kammann, and A. H. Hoon., “Neuroimaging in cerebral palsy,” J. Pediatr. 145(2Suppl), S19–S27 (2004).
[CrossRef] [PubMed]

Kasai, K.

T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007).
[CrossRef] [PubMed]

Kato, N.

T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007).
[CrossRef] [PubMed]

Khan, B.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Kim, Y. H.

S. H. You, S. H. Jang, Y. H. Kim, Y. H. Kwon, I. Barrow, and M. Hallett, “Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy,” Dev. Med. Child Neurol. 47(9), 628–635 (2005).
[PubMed]

Kocsis, L.

L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51(5), N91–N98 (2006).
[CrossRef] [PubMed]

Koh, P. H.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[CrossRef] [PubMed]

Kono, T.

T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007).
[CrossRef] [PubMed]

Kool, P.

A. Sööt, T. Tomberg, P. Kool, R. Rein, and T. Talvik, “Magnetic resonance imaging in children with bilateral spastic forms of cerebral palsy,” Pediatr. Neurol. 38(5), 321–328 (2008).
[CrossRef] [PubMed]

Korzeniewski, S. J.

S. J. Korzeniewski, G. Birbeck, M. C. DeLano, M. J. Potchen, and N. Paneth, “A systematic review of neuroimaging for cerebral palsy,” J. Child Neurol. 23(2), 216–227 (2007).
[CrossRef]

Kozel, F. A.

F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303, 120–130 (2009).
[CrossRef] [PubMed]

Krägeloh-Mann, I.

I. Krägeloh-Mann and C. Cans, “Cerebral palsy update,” Brain Dev. 31(7), 537–544 (2009).
[CrossRef] [PubMed]

M. Staudt, W. Grodd, C. Gerloff, M. Erb, J. Stitz, and I. Krägeloh-Mann, “Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study,” Brain 125(10), 2222–2237 (2002).
[CrossRef] [PubMed]

Krumlinde-Sundholm, L.

A. C. Eliasson, L. Krumlinde-Sundholm, B. Rösblad, E. Beckung, M. Arner, A. M. Ohrvall, and P. Rosenbaum, “The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability,” Dev. Med. Child Neurol. 48(7), 549–554 (2006).
[CrossRef] [PubMed]

Kumar, M.

R. Trivedi, R. K. Gupta, V. Shah, M. Tripathi, R. K. S. Rathore, M. Kumar, C. M. Pandey, and P. A. Narayana, “Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study,” Pediatr. Neurol. 39(5), 341–349 (2008).
[CrossRef] [PubMed]

Kurinczuk, J. J.

C. Morris, J. J. Kurinczuk, R. Fitzpatrick, and P. L. Rosenbaum, “Reliability of the manual ability classification system for children with cerebral palsy,” Dev. Med. Child Neurol. 48(12), 950–953 (2006).
[CrossRef] [PubMed]

Kwon, Y. H.

S. H. You, S. H. Jang, Y. H. Kim, Y. H. Kwon, I. Barrow, and M. Hallett, “Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy,” Dev. Med. Child Neurol. 47(9), 628–635 (2005).
[PubMed]

Kwong, K. K.

G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas, “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy,” Neuroimage 20(1), 479–488 (2003).
[CrossRef] [PubMed]

Leung, T. S.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol. 614, 21–28 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol. 614, 397–403 (2008).
[CrossRef] [PubMed]

Leviton, A.

M. Bax, M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, D. Damiano, and Executive Committee for the Definition of Cerebral Palsy, “Proposed definition and classification of cerebral palsy, April 2005,” Dev. Med. Child Neurol. 47(8), 571–576 (2005).
[CrossRef] [PubMed]

Liu, H.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt. 14(5), 054016 (2009).
[CrossRef] [PubMed]

F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303, 120–130 (2009).
[CrossRef] [PubMed]

F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt. 48(13), 2496–2504 (2009).
[CrossRef] [PubMed]

Lu, C. M.

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[CrossRef]

Matsuo, K.

T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007).
[CrossRef] [PubMed]

Morris, C.

C. Morris, J. J. Kurinczuk, R. Fitzpatrick, and P. L. Rosenbaum, “Reliability of the manual ability classification system for children with cerebral palsy,” Dev. Med. Child Neurol. 48(12), 950–953 (2006).
[CrossRef] [PubMed]

Moura-Ribeiro, M. V. L.

A. M. S. G. Piovesana, M. V. L. Moura-Ribeiro, V. A. Zanardi, and V. M. G. Gonçalves, “Hemiparetic cerebral palsy: etiological risk factors and neuroimaging,” Arq. Neuropsiquiatr. 59(1), 29–34 (2001).
[CrossRef] [PubMed]

Narayana, P. A.

R. Trivedi, R. K. Gupta, V. Shah, M. Tripathi, R. K. S. Rathore, M. Kumar, C. M. Pandey, and P. A. Narayana, “Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study,” Pediatr. Neurol. 39(5), 341–349 (2008).
[CrossRef] [PubMed]

Noll, D. C.

A. Solodkin, P. Hlustik, D. C. Noll, and S. L. Small, “Lateralization of motor circuits and handedness during finger movements,” Eur. J. Neurol. 8(5), 425–434 (2001).
[CrossRef] [PubMed]

Ohrvall, A. M.

A. C. Eliasson, L. Krumlinde-Sundholm, B. Rösblad, E. Beckung, M. Arner, A. M. Ohrvall, and P. Rosenbaum, “The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability,” Dev. Med. Child Neurol. 48(7), 549–554 (2006).
[CrossRef] [PubMed]

Pandey, C. M.

R. Trivedi, R. K. Gupta, V. Shah, M. Tripathi, R. K. S. Rathore, M. Kumar, C. M. Pandey, and P. A. Narayana, “Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study,” Pediatr. Neurol. 39(5), 341–349 (2008).
[CrossRef] [PubMed]

Paneth, N.

S. J. Korzeniewski, G. Birbeck, M. C. DeLano, M. J. Potchen, and N. Paneth, “A systematic review of neuroimaging for cerebral palsy,” J. Child Neurol. 23(2), 216–227 (2007).
[CrossRef]

M. Bax, M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, D. Damiano, and Executive Committee for the Definition of Cerebral Palsy, “Proposed definition and classification of cerebral palsy, April 2005,” Dev. Med. Child Neurol. 47(8), 571–576 (2005).
[CrossRef] [PubMed]

Pauli, P.

M. M. Plichta, M. J. Herrmann, C. G. Baehne, A. C. Ehlis, M. M. Richter, P. Pauli, and A. J. Fallgatter, “Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?” Neuroimage 31(1), 116–124 (2006).
[CrossRef] [PubMed]

Peng, D. L.

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[CrossRef]

Petersen, S. E.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

Piovesana, A. M. S. G.

A. M. S. G. Piovesana, M. V. L. Moura-Ribeiro, V. A. Zanardi, and V. M. G. Gonçalves, “Hemiparetic cerebral palsy: etiological risk factors and neuroimaging,” Arq. Neuropsiquiatr. 59(1), 29–34 (2001).
[CrossRef] [PubMed]

Platek, S. M.

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[CrossRef] [PubMed]

Plichta, M. M.

M. M. Plichta, M. J. Herrmann, C. G. Baehne, A. C. Ehlis, M. M. Richter, P. Pauli, and A. J. Fallgatter, “Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?” Neuroimage 31(1), 116–124 (2006).
[CrossRef] [PubMed]

Poldrack, R. A.

G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas, “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy,” Neuroimage 20(1), 479–488 (2003).
[CrossRef] [PubMed]

Potchen, M. J.

S. J. Korzeniewski, G. Birbeck, M. C. DeLano, M. J. Potchen, and N. Paneth, “A systematic review of neuroimaging for cerebral palsy,” J. Child Neurol. 23(2), 216–227 (2007).
[CrossRef]

Raichle, M. E.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

Rathore, R. K. S.

R. Trivedi, R. K. Gupta, V. Shah, M. Tripathi, R. K. S. Rathore, M. Kumar, C. M. Pandey, and P. A. Narayana, “Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study,” Pediatr. Neurol. 39(5), 341–349 (2008).
[CrossRef] [PubMed]

Reid, C. B.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[CrossRef] [PubMed]

Reid, D.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Rein, R.

A. Sööt, T. Tomberg, P. Kool, R. Rein, and T. Talvik, “Magnetic resonance imaging in children with bilateral spastic forms of cerebral palsy,” Pediatr. Neurol. 38(5), 321–328 (2008).
[CrossRef] [PubMed]

Reynolds, E. O.

M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt, and P. van der Zee, “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183–189 (1988).
[PubMed]

Richter, M. M.

M. M. Plichta, M. J. Herrmann, C. G. Baehne, A. C. Ehlis, M. M. Richter, P. Pauli, and A. J. Fallgatter, “Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?” Neuroimage 31(1), 116–124 (2006).
[CrossRef] [PubMed]

Rogers, M. A.

T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007).
[CrossRef] [PubMed]

Romero, M. I.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Rösblad, B.

A. C. Eliasson, L. Krumlinde-Sundholm, B. Rösblad, E. Beckung, M. Arner, A. M. Ohrvall, and P. Rosenbaum, “The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability,” Dev. Med. Child Neurol. 48(7), 549–554 (2006).
[CrossRef] [PubMed]

Rosenbaum, P.

A. C. Eliasson, L. Krumlinde-Sundholm, B. Rösblad, E. Beckung, M. Arner, A. M. Ohrvall, and P. Rosenbaum, “The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability,” Dev. Med. Child Neurol. 48(7), 549–554 (2006).
[CrossRef] [PubMed]

M. Bax, M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, D. Damiano, and Executive Committee for the Definition of Cerebral Palsy, “Proposed definition and classification of cerebral palsy, April 2005,” Dev. Med. Child Neurol. 47(8), 571–576 (2005).
[CrossRef] [PubMed]

Rosenbaum, P. L.

C. Morris, J. J. Kurinczuk, R. Fitzpatrick, and P. L. Rosenbaum, “Reliability of the manual ability classification system for children with cerebral palsy,” Dev. Med. Child Neurol. 48(12), 950–953 (2006).
[CrossRef] [PubMed]

Ruocco, A. C.

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[CrossRef] [PubMed]

Schlaggar, B. L.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Schlögel, X.

Y. Vandermeeren, G. Sébire, C. B. Grandin, J. L. Thonnard, X. Schlögel, and A. G. De Volder, “Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study,” Neuroimage 20(1), 289–301 (2003).
[CrossRef] [PubMed]

Sébire, G.

Y. Vandermeeren, G. Sébire, C. B. Grandin, J. L. Thonnard, X. Schlögel, and A. G. De Volder, “Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study,” Neuroimage 20(1), 289–301 (2003).
[CrossRef] [PubMed]

Shah, V.

R. Trivedi, R. K. Gupta, V. Shah, M. Tripathi, R. K. S. Rathore, M. Kumar, C. M. Pandey, and P. A. Narayana, “Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study,” Pediatr. Neurol. 39(5), 341–349 (2008).
[CrossRef] [PubMed]

Sharma, V.

F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303, 120–130 (2009).
[CrossRef] [PubMed]

Small, S. L.

A. Solodkin, P. Hlustik, D. C. Noll, and S. L. Small, “Lateralization of motor circuits and handedness during finger movements,” Eur. J. Neurol. 8(5), 425–434 (2001).
[CrossRef] [PubMed]

Smith, L.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Smith, M.

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol. 614, 21–28 (2008).
[CrossRef] [PubMed]

Snyder, A. Z.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

Solodkin, A.

A. Solodkin, P. Hlustik, D. C. Noll, and S. L. Small, “Lateralization of motor circuits and handedness during finger movements,” Eur. J. Neurol. 8(5), 425–434 (2001).
[CrossRef] [PubMed]

Sööt, A.

A. Sööt, T. Tomberg, P. Kool, R. Rein, and T. Talvik, “Magnetic resonance imaging in children with bilateral spastic forms of cerebral palsy,” Pediatr. Neurol. 38(5), 321–328 (2008).
[CrossRef] [PubMed]

Staudt, M.

M. Staudt, W. Grodd, C. Gerloff, M. Erb, J. Stitz, and I. Krägeloh-Mann, “Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study,” Brain 125(10), 2222–2237 (2002).
[CrossRef] [PubMed]

Stephens, J. A.

L. J. Carr, L. M. Harrison, A. L. Evans, and J. A. Stephens, “Patterns of central motor reorganization in hemiplegic cerebral palsy,” Brain 116(5), 1223–1247 (1993).
[CrossRef] [PubMed]

S. F. Farmer, L. M. Harrison, D. A. Ingram, and J. A. Stephens, “Plasticity of central motor pathways in children with hemiplegic cerebral palsy,” Neurology 41(9), 1505–1510 (1991).
[PubMed]

Stitz, J.

M. Staudt, W. Grodd, C. Gerloff, M. Erb, J. Stitz, and I. Krägeloh-Mann, “Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study,” Brain 125(10), 2222–2237 (2002).
[CrossRef] [PubMed]

Strangman, G.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas, “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy,” Neuroimage 20(1), 479–488 (2003).
[CrossRef] [PubMed]

Strangman, G. E.

Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009).
[CrossRef] [PubMed]

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007).
[CrossRef] [PubMed]

Tachtsidis, I.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol. 614, 21–28 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol. 614, 397–403 (2008).
[CrossRef] [PubMed]

Taketani, Y.

T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007).
[CrossRef] [PubMed]

Takizawa, R.

T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007).
[CrossRef] [PubMed]

Talvik, T.

A. Sööt, T. Tomberg, P. Kool, R. Rein, and T. Talvik, “Magnetic resonance imaging in children with bilateral spastic forms of cerebral palsy,” Pediatr. Neurol. 38(5), 321–328 (2008).
[CrossRef] [PubMed]

Thonnard, J. L.

Y. Vandermeeren, G. Sébire, C. B. Grandin, J. L. Thonnard, X. Schlögel, and A. G. De Volder, “Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study,” Neuroimage 20(1), 289–301 (2003).
[CrossRef] [PubMed]

Tian, F.

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt. 14(5), 054016 (2009).
[CrossRef] [PubMed]

F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303, 120–130 (2009).
[CrossRef] [PubMed]

F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt. 48(13), 2496–2504 (2009).
[CrossRef] [PubMed]

Tisdall, M. M.

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol. 614, 21–28 (2008).
[CrossRef] [PubMed]

Tomberg, T.

A. Sööt, T. Tomberg, P. Kool, R. Rein, and T. Talvik, “Magnetic resonance imaging in children with bilateral spastic forms of cerebral palsy,” Pediatr. Neurol. 38(5), 321–328 (2008).
[CrossRef] [PubMed]

Tripathi, M.

R. Trivedi, R. K. Gupta, V. Shah, M. Tripathi, R. K. S. Rathore, M. Kumar, C. M. Pandey, and P. A. Narayana, “Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study,” Pediatr. Neurol. 39(5), 341–349 (2008).
[CrossRef] [PubMed]

Trivedi, R.

R. Trivedi, R. K. Gupta, V. Shah, M. Tripathi, R. K. S. Rathore, M. Kumar, C. M. Pandey, and P. A. Narayana, “Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study,” Pediatr. Neurol. 39(5), 341–349 (2008).
[CrossRef] [PubMed]

Tsunashima, K.

T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007).
[CrossRef] [PubMed]

Uvebrant, P.

B. Hagberg, G. Hagberg, E. Beckung, and P. Uvebrant, “Changing panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth year period 1991-94,” Acta Paediatr. 90(3), 271–277 (2001).
[CrossRef] [PubMed]

van der Zee, P.

M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt, and P. van der Zee, “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183–189 (1988).
[PubMed]

Vandermeeren, Y.

Y. Vandermeeren, G. Sébire, C. B. Grandin, J. L. Thonnard, X. Schlögel, and A. G. De Volder, “Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study,” Neuroimage 20(1), 289–301 (2003).
[CrossRef] [PubMed]

Villringer, A.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20(10), 435–442 (1997).
[CrossRef] [PubMed]

Wagner, J.

G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas, “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy,” Neuroimage 20(1), 479–488 (2003).
[CrossRef] [PubMed]

Walker, S. A.

S. A. Walker, S. Fantini, and E. Gratton, “Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media,” Appl. Opt. 36(1), 170–174 (1997).
[CrossRef] [PubMed]

White, B. R.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Wray, S.

M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt, and P. van der Zee, “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183–189 (1988).
[PubMed]

Wyatt, J.

M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt, and P. van der Zee, “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183–189 (1988).
[PubMed]

Yamasue, H.

T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007).
[CrossRef] [PubMed]

Yano, T.

T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007).
[CrossRef] [PubMed]

You, S. H.

S. H. You, S. H. Jang, Y. H. Kim, Y. H. Kwon, I. Barrow, and M. Hallett, “Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy,” Dev. Med. Child Neurol. 47(9), 628–635 (2005).
[PubMed]

Zanardi, V. A.

A. M. S. G. Piovesana, M. V. L. Moura-Ribeiro, V. A. Zanardi, and V. M. G. Gonçalves, “Hemiparetic cerebral palsy: etiological risk factors and neuroimaging,” Arq. Neuropsiquiatr. 59(1), 29–34 (2001).
[CrossRef] [PubMed]

Zang, Y. F.

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[CrossRef]

Zeff, B. W.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Zhang, Q.

Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009).
[CrossRef] [PubMed]

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007).
[CrossRef] [PubMed]

Zhang, Y. J.

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[CrossRef]

Zhu, C. Z.

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[CrossRef]

Acta Paediatr.

B. Hagberg, G. Hagberg, E. Beckung, and P. Uvebrant, “Changing panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth year period 1991-94,” Acta Paediatr. 90(3), 271–277 (2001).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol.

M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt, and P. van der Zee, “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183–189 (1988).
[PubMed]

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol. 614, 21–28 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol. 614, 397–403 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009).
[CrossRef] [PubMed]

Appl. Opt.

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[CrossRef] [PubMed]

S. A. Walker, S. Fantini, and E. Gratton, “Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media,” Appl. Opt. 36(1), 170–174 (1997).
[CrossRef] [PubMed]

F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt. 48(13), 2496–2504 (2009).
[CrossRef] [PubMed]

Arq. Neuropsiquiatr.

A. M. S. G. Piovesana, M. V. L. Moura-Ribeiro, V. A. Zanardi, and V. M. G. Gonçalves, “Hemiparetic cerebral palsy: etiological risk factors and neuroimaging,” Arq. Neuropsiquiatr. 59(1), 29–34 (2001).
[CrossRef] [PubMed]

Brain

L. J. Carr, L. M. Harrison, A. L. Evans, and J. A. Stephens, “Patterns of central motor reorganization in hemiplegic cerebral palsy,” Brain 116(5), 1223–1247 (1993).
[CrossRef] [PubMed]

M. Staudt, W. Grodd, C. Gerloff, M. Erb, J. Stitz, and I. Krägeloh-Mann, “Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study,” Brain 125(10), 2222–2237 (2002).
[CrossRef] [PubMed]

Brain Dev.

I. Krägeloh-Mann and C. Cans, “Cerebral palsy update,” Brain Dev. 31(7), 537–544 (2009).
[CrossRef] [PubMed]

Brain Res.

F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303, 120–130 (2009).
[CrossRef] [PubMed]

Clin. Neuropsychol.

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[CrossRef] [PubMed]

Dev. Med. Child Neurol.

A. C. Eliasson, L. Krumlinde-Sundholm, B. Rösblad, E. Beckung, M. Arner, A. M. Ohrvall, and P. Rosenbaum, “The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability,” Dev. Med. Child Neurol. 48(7), 549–554 (2006).
[CrossRef] [PubMed]

C. Morris, J. J. Kurinczuk, R. Fitzpatrick, and P. L. Rosenbaum, “Reliability of the manual ability classification system for children with cerebral palsy,” Dev. Med. Child Neurol. 48(12), 950–953 (2006).
[CrossRef] [PubMed]

S. H. You, S. H. Jang, Y. H. Kim, Y. H. Kwon, I. Barrow, and M. Hallett, “Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy,” Dev. Med. Child Neurol. 47(9), 628–635 (2005).
[PubMed]

M. Bax, M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, D. Damiano, and Executive Committee for the Definition of Cerebral Palsy, “Proposed definition and classification of cerebral palsy, April 2005,” Dev. Med. Child Neurol. 47(8), 571–576 (2005).
[CrossRef] [PubMed]

Eur. J. Neurol.

A. Solodkin, P. Hlustik, D. C. Noll, and S. L. Small, “Lateralization of motor circuits and handedness during finger movements,” Eur. J. Neurol. 8(5), 425–434 (2001).
[CrossRef] [PubMed]

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

J. Biomed. Opt.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006).
[CrossRef] [PubMed]

B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010).
[CrossRef] [PubMed]

Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007).
[CrossRef] [PubMed]

F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt. 14(5), 054016 (2009).
[CrossRef] [PubMed]

J. Child Neurol.

S. J. Korzeniewski, G. Birbeck, M. C. DeLano, M. J. Potchen, and N. Paneth, “A systematic review of neuroimaging for cerebral palsy,” J. Child Neurol. 23(2), 216–227 (2007).
[CrossRef]

J. Neurosci. Methods

C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010).
[CrossRef]

J. Pediatr.

J. Accardo, H. Kammann, and A. H. Hoon., “Neuroimaging in cerebral palsy,” J. Pediatr. 145(2Suppl), S19–S27 (2004).
[CrossRef] [PubMed]

Ment. Retard. Dev. Disabil. Res. Rev.

S. A. Back, “Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms,” Ment. Retard. Dev. Disabil. Res. Rev. 12(2), 129–140 (2006).
[CrossRef] [PubMed]

Neuroimage

Y. Vandermeeren, G. Sébire, C. B. Grandin, J. L. Thonnard, X. Schlögel, and A. G. De Volder, “Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study,” Neuroimage 20(1), 289–301 (2003).
[CrossRef] [PubMed]

G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas, “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy,” Neuroimage 20(1), 479–488 (2003).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006).
[CrossRef]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(1Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009).
[CrossRef] [PubMed]

M. M. Plichta, M. J. Herrmann, C. G. Baehne, A. C. Ehlis, M. M. Richter, P. Pauli, and A. J. Fallgatter, “Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?” Neuroimage 31(1), 116–124 (2006).
[CrossRef] [PubMed]

Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009).
[CrossRef] [PubMed]

Neurology

S. F. Farmer, L. M. Harrison, D. A. Ingram, and J. A. Stephens, “Plasticity of central motor pathways in children with hemiplegic cerebral palsy,” Neurology 41(9), 1505–1510 (1991).
[PubMed]

Neuromolecular Med.

M. V. Johnston and A. H. Hoon., “Cerebral palsy,” Neuromolecular Med. 8(4), 435–450 (2006).
[CrossRef] [PubMed]

Neurosci. Res.

T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007).
[CrossRef] [PubMed]

Opt. Lett.

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29(13), 1506–1508 (2004).
[CrossRef] [PubMed]

Pediatr. Neurol.

R. Trivedi, R. K. Gupta, V. Shah, M. Tripathi, R. K. S. Rathore, M. Kumar, C. M. Pandey, and P. A. Narayana, “Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study,” Pediatr. Neurol. 39(5), 341–349 (2008).
[CrossRef] [PubMed]

A. Sööt, T. Tomberg, P. Kool, R. Rein, and T. Talvik, “Magnetic resonance imaging in children with bilateral spastic forms of cerebral palsy,” Pediatr. Neurol. 38(5), 321–328 (2008).
[CrossRef] [PubMed]

Phys. Med. Biol.

L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51(5), N91–N98 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Trends Neurosci.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20(10), 435–442 (1997).
[CrossRef] [PubMed]

Other

B. Khan, F. Tian, M. I. Romero, H. Liu, G. Alexandrakis, L. Smith, N. J. Clegg, M. R. Delgado, C. Wildey, and D. L. MacFarlane, “Functional near infrared brain imaging with a brush-fiber optode array to improve study success rates on pediatric subjects with cerebral palsy,” submitted to SPIE Photonics West (2010).

E. R. Hom, http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the placement of fNIRS probe on the sensorimotor cortex: (a) Location of the optodes (gray circles are sources and gray squares are detectors) on the subject’s head in accordance with a ‘10-20’ EEG arrangement, as labeled by open circles. (b) Enlarged configuration of the fNIRS probe, consisting of 28 nearest source-detector optode pairs (indicated with solid lines between sources and detectors), 14 pairs on each hemisphere.

Fig. 2
Fig. 2

Schematic illustrations of spatiotemporal analysis: (a) A set of Δ[HbO 2] images in time sequence during motor activation. The solid contoured line marks the activation area in each slice based on half-maximum thresholding. (b) A 3D, spatiotemporal mask of matrix elements in Δ[HbO 2] above the half maximum in (x, y, t) space, which represents both the spatial and temporal patterns of motor activation. Both (a) and (b) were obtained from a control subject during right-hand tapping.

Fig. 3
Fig. 3

Reproducibility of motor activation during left-hand finger tapping measured from a control subject (male, 7 years old) in two visits. Δ[HbO 2] images are obtained at its peak time of motor activation (about 16-17 sec after the initial tapping) from (a) Visit 1 and (b) Visit 2. Both visits show clear activation on the subject’s contralateral hemisphere (right hemisphere). The solid lines outline the activated areas with Δ[HbO 2] values larger than the half-maximum threshold. (c) The temporal evolutions of Δ[HbO2 ], and Δ[Hb] in Visit 1 (solid curves) and Visit 2 (dotted curves) are obtained from the center of activation in contralateral hemisphere. The gray box marks the duration of finger tapping.

Fig. 4
Fig. 4

Motor activation due to paretic-hand (right hand) finger tapping from a subject (male, 12 years old) with right hemiparesis. (a) MRI of the subject’s brain showing a white matter lesion in the left centrum-semiovale; (b) Surface EMG data recorded from the extensor and flexor muscles of both forearms. It shows distinct movements of right extensors during tapping in all of ten epochs. No mirror movements are observed from the non-paretic hand (left hand); (c) 3D spatiotemporal pattern of Δ[HbO 2] above its half-maximum during motor activation; (d) 2D Δ[HbO 2] image of motor activation at its peak time (unit of color bar: μM). Both (c) and (d) show bilateral characteristics. Thus, a distinct participation of the unaffected hemisphere (right hemisphere) to the paretic-hand tapping is demonstrated.

Fig. 5
Fig. 5

Age-dependent lateralization (L value) in both (a) Control group and (b) CP group (Some data points in each subfigure are overlapped). Both figures show that the younger subjects have lower L values, especially the 6-year-old subjects, tending to have weaker contralateral activation. In each group, the overall trend of dependence of L on age follows an asymptotic curve (shown by the dash lines). At 7 years of age and older, as marked by the gray boxes, the dependence of L on age becomes insignificant in either group.

Tables (2)

Tables Icon

Table 1 Demographics of subjects with hemiparetic CP and age-matched healthy subjects between 6 and 12 years old

Tables Icon

Table 2 Spatiotemporal characterizations (mean ± SD) of motor activation in the CP group and age-matched Control group

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ μ a ( λ ) = α H b O 2 ( λ ) Δ [ H b O 2 ] + α H b ( λ ) Δ [ H b ] ,
Δ O D ( t , λ ) = l n ( Φ ( t , λ ) Φ 0 ( λ ) ) ,
Δ O D ( t , λ ) = Δ μ a ( t , λ ) L ( λ ) .
Δ O D i ( t , λ ) = j = 1 N v o x Δ μ a , j ( t , λ ) L i , j ( λ ) ,
L = V c o n t r a V i p s i V c o n t r a + V i p s i .

Metrics