Abstract

Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Evans, “A new type of magnetic balance,” J. Phys. E: Sci. Instrum. 7, 247 (1974).
    [Crossref]
  2. M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
    [Crossref] [PubMed]
  3. T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
    [Crossref] [PubMed]
  4. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
    [Crossref] [PubMed]
  5. S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
    [Crossref] [PubMed]
  6. J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
    [Crossref] [PubMed]
  7. A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
    [Crossref] [PubMed]
  8. L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
    [Crossref] [PubMed]
  9. J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
    [Crossref] [PubMed]
  10. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
    [Crossref] [PubMed]
  11. B. Popa and S. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
    [Crossref] [PubMed]
  12. K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
    [Crossref] [PubMed]
  13. S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
    [Crossref]
  14. N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
    [Crossref] [PubMed]
  15. Y. Jeyaram, S. Jha, M. Agio, J. Löffler, and Y. Ekinci, “Magnetic metamaterials in the blue range using aluminum nanostructures,” Opt. Lett. 35, 1656–1658 (2010).
    [Crossref] [PubMed]
  16. J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010).
    [Crossref] [PubMed]
  17. R. Merlin, “Metamaterials and the Landau-Lifshits permeability argument: large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106, 1693–1698 (2009).
    [Crossref] [PubMed]
  18. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
    [Crossref] [PubMed]
  19. M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
    [Crossref] [PubMed]
  20. S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
    [Crossref] [PubMed]
  21. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  22. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nanostructure,” Opt. Express 18, 10905–10923 (2010).
    [Crossref] [PubMed]
  23. T. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15, 10920–10928 (2007).
    [Crossref] [PubMed]
  24. T. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16, 451–457 (2008).
    [Crossref]
  25. T. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics pp. (2010).
    [Crossref]
  26. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  27. S. Bozhevolnyi and K. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett. 35, 541–543 (2010).
    [Crossref] [PubMed]

2010 (7)

N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
[Crossref] [PubMed]

Y. Jeyaram, S. Jha, M. Agio, J. Löffler, and Y. Ekinci, “Magnetic metamaterials in the blue range using aluminum nanostructures,” Opt. Lett. 35, 1656–1658 (2010).
[Crossref] [PubMed]

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18, 14454–14466 (2010).
[Crossref] [PubMed]

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nanostructure,” Opt. Express 18, 10905–10923 (2010).
[Crossref] [PubMed]

S. Bozhevolnyi and K. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett. 35, 541–543 (2010).
[Crossref] [PubMed]

2009 (6)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
[Crossref]

R. Merlin, “Metamaterials and the Landau-Lifshits permeability argument: large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106, 1693–1698 (2009).
[Crossref] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref] [PubMed]

2008 (4)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

B. Popa and S. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref] [PubMed]

T. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16, 451–457 (2008).
[Crossref]

2007 (3)

T. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15, 10920–10928 (2007).
[Crossref] [PubMed]

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

2005 (2)

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

2004 (1)

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

2001 (1)

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

1974 (1)

D. Evans, “A new type of magnetic balance,” J. Phys. E: Sci. Instrum. 7, 247 (1974).
[Crossref]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Agio, M.

Ali, T.

N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
[Crossref] [PubMed]

Antosiewicz, T.

T. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16, 451–457 (2008).
[Crossref]

T. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15, 10920–10928 (2007).
[Crossref] [PubMed]

T. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics pp. (2010).
[Crossref]

Balet, L.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Banzer, P.

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Basov, D.

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Bozhevolnyi, S.

Brongersma, M.

J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

Burresi, M.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Cabuz, A.

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Cassagne, D.

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Centeno, E.

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Chen, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Chettiar, U.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref] [PubMed]

Chipouline, A.

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cummer, S.

B. Popa and S. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref] [PubMed]

Drachev, V.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref] [PubMed]

Du, B.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Economou, E.

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

Ekinci, Y.

Evans, D.

D. Evans, “A new type of magnetic balance,” J. Phys. E: Sci. Instrum. 7, 247 (1974).
[Crossref]

Fang, N.

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Felbacq, D.

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Fiore, A.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Francardi, M.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Genov, D.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Gerardino, A.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Gilderdale, D.

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

Grzegorczyk, T.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Guizal, B.

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Gurioli, M.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Hajnal, J.

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

Halas, N.

N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
[Crossref] [PubMed]

Heideman, R.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Huang, X.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Intonti, F.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Ishikawa, A.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

Jeyaram, Y.

Jha, S.

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

Kampfrath, T.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Kang, L.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Kawata, S.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

Khoo, I.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

Kildishev, A.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref] [PubMed]

Kong, J.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Koschny, T.

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

Kuipers, L.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Lalanne, P.

Larkman, D.

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

Lederer, F.

Leinse, A.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Leuchs, G.

Li, B.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Li, L.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Li, L. L.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Löffler, J.

Menzel, C.

Merlin, R.

R. Merlin, “Metamaterials and the Landau-Lifshits permeability argument: large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106, 1693–1698 (2009).
[Crossref] [PubMed]

Mirin, N.

N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
[Crossref] [PubMed]

Nerkararyan, K.

Noda, S.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

Nordlander, P.

N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
[Crossref] [PubMed]

Padilla, W.

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Pendry, J.

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

Peng, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Pertsch, T.

Peschel, U.

Petschulat, J.

Popa, B.

B. Popa and S. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref] [PubMed]

Prangsma, J.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

Quabis, S.

Ran, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Riboli, F.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Rockstuhl, C.

Schoenmaker, H.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Schuller, J.

J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

Shalaev, V.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref] [PubMed]

Smith, D.

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Song, B.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

Soukoulis, C.

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

Szoplik, T.

T. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16, 451–457 (2008).
[Crossref]

T. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15, 10920–10928 (2007).
[Crossref] [PubMed]

T. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics pp. (2010).
[Crossref]

Tanaka, T.

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

Tauber, T.

J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

Tüennermann, A.

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

van Oosten, D.

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Vier, D.

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Vignolini, S.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Vynck, K.

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

Wiersma, D.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Wiltshire, M.

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

Wróbel, P.

T. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics pp. (2010).
[Crossref]

Xiao, S.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, and V. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009).
[Crossref] [PubMed]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

Xie, Q.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Yang, J.

Yen, T.

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Young, I.

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Zhan, Q.

Zhang, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Zhao, H.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Zhao, Q.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

Zhou, J.

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

Zia, R.

J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

ACS Nano (1)

N. Mirin, T. Ali, P. Nordlander, and N. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[Crossref]

J. Phys. E: Sci. Instrum. (1)

D. Evans, “A new type of magnetic balance,” J. Phys. E: Sci. Instrum. 7, 247 (1974).
[Crossref]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Opto-Electron. Rev. (1)

T. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16, 451–457 (2008).
[Crossref]

Phys. Rev. B (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (9)

J. Zhou, T. Koschny, M. Kafesaki, E. Economou, J. Pendry, and C. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[Crossref] [PubMed]

A. Ishikawa, T. Tanaka, and S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
[Crossref] [PubMed]

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007).
[Crossref] [PubMed]

J. Schuller, R. Zia, T. Tauber, and M. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007).
[Crossref] [PubMed]

Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008).
[Crossref] [PubMed]

B. Popa and S. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100, 207401 (2008).
[Crossref] [PubMed]

K. Vynck, D. Felbacq, E. Centeno, A. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009).
[Crossref] [PubMed]

M. Burresi, T. Kampfrath, D. van Oosten, J. Prangsma, B. Song, S. Noda, and L. Kuipers, “Magnetic light-matter intersactions in a photonic crystal nanocavity,” Phys. Rev. Lett. 105, 123901 (2010).
[Crossref] [PubMed]

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, D. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett. 105, 123902 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Merlin, “Metamaterials and the Landau-Lifshits permeability argument: large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A. 106, 1693–1698 (2009).
[Crossref] [PubMed]

Science (3)

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001).
[Crossref] [PubMed]

T. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref] [PubMed]

Other (1)

T. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics pp. (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A dielectric probe with radial metal stripes concentrates the longitudinal magnetic component of light, shown in yellow, into a subwavelength spot to measure the magnetic moment of individual metamaterial elementary cells. (b) The tapered at angle α part of a silver-coated fiber probe with eight equidistant slits and eight h thick metal lands of constant angular width equal π/8. (c) Azimuthal currents Jϕ generating the longitudinal magnetic field Hz indicated by black arrowheads and an out-of-plane vector, respectively.

Fig. 2
Fig. 2

Electromagnetic field in the tapered part of the probe with 50 nm silver layer: energy density of (a) azimuthal electric field ɛ E ϕ 2, (b) longitudinal field ɛ E z 2, (c) radial magnetic field μ H r 2, (d) longitudinal μ H z 2. The pseudocolor scale is logarithmic and in arbitrary units, wavelength λ = 500 nm is used as an example.

Fig. 3
Fig. 3

FWHM of Hz calculated 10 nm from the apex for h ∈ [0, 100] nm.

Fig. 4
Fig. 4

Integrated energy densities of (a) Eϕ (b) Ez (c) Hr (d) Hz 10 nm from the apex in the focus where Hz is dominant. Units are arbitrary and the same for all subfigures. (e) Ratio of integrated energy densities of Hz to Eϕ.

Metrics