Abstract

A wide range of transformation media designed with conformal mapping are currently being studied extensively due to their favorable properties: isotropy, moderate index requirements, low loss and broad bandwidth. For optical frequency operation, the transformation media are commonly fabricated on high index semiconductor thin films. These 2D implementations, however, inevitably introduces waveguide dispersion, which affects the bandwidth and loss behavior. In this paper, for carpet cloaks implemented by a silicon nanorod array, we have confirmed that waveguide dispersion limits the bandwidth of the transformation medium by direct visualizing the cut-off conditions with near-field scanning optical microscopy (NSOM). Furthermore, we have experimentally demonstrated the extension of cut-off wavelength by depositing a conformal dielectric layer. This study illustrates the constraints on the 2D transformation media imposed by the waveguide dispersion and suggests a general technique to tune and modify their optical properties.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for review H Chen, C. T . Chan, and P Sheng, “Transformantion optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
    [CrossRef]
  2. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
    [CrossRef] [PubMed]
  3. G. Milton and N. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462(2074), 3027–3059 (2006).
    [CrossRef]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  6. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [CrossRef]
  7. P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak of complex shape from a perfect three-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008).
    [CrossRef]
  8. W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
    [CrossRef]
  9. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [CrossRef] [PubMed]
  10. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
    [CrossRef] [PubMed]
  11. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  12. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
    [CrossRef]
  13. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [CrossRef] [PubMed]
  14. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  15. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
    [CrossRef]
  16. J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010).
    [CrossRef] [PubMed]
  17. M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A 81(3), 033837 (2010).
    [CrossRef]
  18. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
    [CrossRef]
  19. S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray optics at a deep-subwavelength scale: a transformation optics approach,” Nano Lett. 8(12), 4243–4247 (2008).
    [CrossRef]
  20. N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
    [CrossRef] [PubMed]
  21. T. Zentgraf, J. Valentine, N. Tapia, J. Li, and X. Zhang, “An optical “Janus” device for integrated photonics,” Adv. Mater. 22(23), 2561–2564 (2010).
    [CrossRef] [PubMed]
  22. J. Blair, D. Brown, V. A. Tamma, W. Park, and C. Summers, “Challenges in the fabrication of an optical frequency ground plane cloak consisting of silicon nanorod arrays,” J. Vac. Sci. Technol. B 28(6), 1222–1230 (2010).
    [CrossRef]
  23. J. S. King, C. W. Neff, W. Park, D. Morton, E. Forsythe, S. Blomquist, and C. J. Summers, “High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition,” Appl. Phys. Lett. 83(13), 2566 (2003).
    [CrossRef]
  24. D. P. Gaillot, E. Graugnard, J. Blair, and C. J. Summers, “Dispersion control in two-dimensional superlattice photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett. 91(18), 181123 (2007).
    [CrossRef]

2010 (7)

See, for review H Chen, C. T . Chan, and P Sheng, “Transformantion optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010).
[CrossRef] [PubMed]

M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A 81(3), 033837 (2010).
[CrossRef]

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[CrossRef]

T. Zentgraf, J. Valentine, N. Tapia, J. Li, and X. Zhang, “An optical “Janus” device for integrated photonics,” Adv. Mater. 22(23), 2561–2564 (2010).
[CrossRef] [PubMed]

J. Blair, D. Brown, V. A. Tamma, W. Park, and C. Summers, “Challenges in the fabrication of an optical frequency ground plane cloak consisting of silicon nanorod arrays,” J. Vac. Sci. Technol. B 28(6), 1222–1230 (2010).
[CrossRef]

2009 (5)

N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
[CrossRef] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

2008 (4)

P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak of complex shape from a perfect three-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray optics at a deep-subwavelength scale: a transformation optics approach,” Nano Lett. 8(12), 4243–4247 (2008).
[CrossRef]

2007 (2)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

D. P. Gaillot, E. Graugnard, J. Blair, and C. J. Summers, “Dispersion control in two-dimensional superlattice photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett. 91(18), 181123 (2007).
[CrossRef]

2006 (4)

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

G. Milton and N. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462(2074), 3027–3059 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

2003 (1)

J. S. King, C. W. Neff, W. Park, D. Morton, E. Forsythe, S. Blomquist, and C. J. Summers, “High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition,” Appl. Phys. Lett. 83(13), 2566 (2003).
[CrossRef]

. Chan, C. T

See, for review H Chen, C. T . Chan, and P Sheng, “Transformantion optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray optics at a deep-subwavelength scale: a transformation optics approach,” Nano Lett. 8(12), 4243–4247 (2008).
[CrossRef]

Blair, J.

J. Blair, D. Brown, V. A. Tamma, W. Park, and C. Summers, “Challenges in the fabrication of an optical frequency ground plane cloak consisting of silicon nanorod arrays,” J. Vac. Sci. Technol. B 28(6), 1222–1230 (2010).
[CrossRef]

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[CrossRef] [PubMed]

D. P. Gaillot, E. Graugnard, J. Blair, and C. J. Summers, “Dispersion control in two-dimensional superlattice photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett. 91(18), 181123 (2007).
[CrossRef]

Blomquist, S.

J. S. King, C. W. Neff, W. Park, D. Morton, E. Forsythe, S. Blomquist, and C. J. Summers, “High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition,” Appl. Phys. Lett. 83(13), 2566 (2003).
[CrossRef]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Brown, D.

J. Blair, D. Brown, V. A. Tamma, W. Park, and C. Summers, “Challenges in the fabrication of an optical frequency ground plane cloak consisting of silicon nanorod arrays,” J. Vac. Sci. Technol. B 28(6), 1222–1230 (2010).
[CrossRef]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Chen,, H

See, for review H Chen, C. T . Chan, and P Sheng, “Transformantion optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

Cheng, Q.

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Cui, T. J.

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Forsythe, E.

J. S. King, C. W. Neff, W. Park, D. Morton, E. Forsythe, S. Blomquist, and C. J. Summers, “High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition,” Appl. Phys. Lett. 83(13), 2566 (2003).
[CrossRef]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Gaillot, D. P.

D. P. Gaillot, E. Graugnard, J. Blair, and C. J. Summers, “Dispersion control in two-dimensional superlattice photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett. 91(18), 181123 (2007).
[CrossRef]

Genov, D.

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray optics at a deep-subwavelength scale: a transformation optics approach,” Nano Lett. 8(12), 4243–4247 (2008).
[CrossRef]

Graugnard, E.

D. P. Gaillot, E. Graugnard, J. Blair, and C. J. Summers, “Dispersion control in two-dimensional superlattice photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett. 91(18), 181123 (2007).
[CrossRef]

Han, S.

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray optics at a deep-subwavelength scale: a transformation optics approach,” Nano Lett. 8(12), 4243–4247 (2008).
[CrossRef]

He, S.

P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak of complex shape from a perfect three-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008).
[CrossRef]

Jiang, W. X.

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

Jiang, Z. H.

J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010).
[CrossRef] [PubMed]

Jin, Y.

P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak of complex shape from a perfect three-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

King, J. S.

J. S. King, C. W. Neff, W. Park, D. Morton, E. Forsythe, S. Blomquist, and C. J. Summers, “High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition,” Appl. Phys. Lett. 83(13), 2566 (2003).
[CrossRef]

Kundtz, N.

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[CrossRef]

Landy, N. I.

N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
[CrossRef] [PubMed]

Lederer, F.

M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A 81(3), 033837 (2010).
[CrossRef]

Lee, J. H.

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Li, J.

T. Zentgraf, J. Valentine, N. Tapia, J. Li, and X. Zhang, “An optical “Janus” device for integrated photonics,” Adv. Mater. 22(23), 2561–2564 (2010).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Liu, R.

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

Liu, Z.

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray optics at a deep-subwavelength scale: a transformation optics approach,” Nano Lett. 8(12), 4243–4247 (2008).
[CrossRef]

Massoud, A. T.

J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010).
[CrossRef] [PubMed]

Milton, G.

G. Milton and N. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462(2074), 3027–3059 (2006).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Morton, D.

J. S. King, C. W. Neff, W. Park, D. Morton, E. Forsythe, S. Blomquist, and C. J. Summers, “High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition,” Appl. Phys. Lett. 83(13), 2566 (2003).
[CrossRef]

Neff, C. W.

J. S. King, C. W. Neff, W. Park, D. Morton, E. Forsythe, S. Blomquist, and C. J. Summers, “High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition,” Appl. Phys. Lett. 83(13), 2566 (2003).
[CrossRef]

Nicorovici, N. P.

G. Milton and N. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462(2074), 3027–3059 (2006).
[CrossRef]

Padilla, W. J.

N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
[CrossRef] [PubMed]

Park, W.

J. Blair, D. Brown, V. A. Tamma, W. Park, and C. Summers, “Challenges in the fabrication of an optical frequency ground plane cloak consisting of silicon nanorod arrays,” J. Vac. Sci. Technol. B 28(6), 1222–1230 (2010).
[CrossRef]

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[CrossRef] [PubMed]

J. S. King, C. W. Neff, W. Park, D. Morton, E. Forsythe, S. Blomquist, and C. J. Summers, “High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition,” Appl. Phys. Lett. 83(13), 2566 (2003).
[CrossRef]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Rhee, S. J.

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[CrossRef] [PubMed]

Rockstuhl, C.

M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A 81(3), 033837 (2010).
[CrossRef]

Schmiele, M.

M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A 81(3), 033837 (2010).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Sheng, P

See, for review H Chen, C. T . Chan, and P Sheng, “Transformantion optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

Smith, D. R.

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Summers, C.

J. Blair, D. Brown, V. A. Tamma, W. Park, and C. Summers, “Challenges in the fabrication of an optical frequency ground plane cloak consisting of silicon nanorod arrays,” J. Vac. Sci. Technol. B 28(6), 1222–1230 (2010).
[CrossRef]

Summers, C. J.

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[CrossRef] [PubMed]

D. P. Gaillot, E. Graugnard, J. Blair, and C. J. Summers, “Dispersion control in two-dimensional superlattice photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett. 91(18), 181123 (2007).
[CrossRef]

J. S. King, C. W. Neff, W. Park, D. Morton, E. Forsythe, S. Blomquist, and C. J. Summers, “High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition,” Appl. Phys. Lett. 83(13), 2566 (2003).
[CrossRef]

Tamma, V. A.

J. Blair, D. Brown, V. A. Tamma, W. Park, and C. Summers, “Challenges in the fabrication of an optical frequency ground plane cloak consisting of silicon nanorod arrays,” J. Vac. Sci. Technol. B 28(6), 1222–1230 (2010).
[CrossRef]

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[CrossRef] [PubMed]

Tapia, N.

T. Zentgraf, J. Valentine, N. Tapia, J. Li, and X. Zhang, “An optical “Janus” device for integrated photonics,” Adv. Mater. 22(23), 2561–2564 (2010).
[CrossRef] [PubMed]

Turpin, J. P.

J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010).
[CrossRef] [PubMed]

Tyc, T.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

Valentine, J.

T. Zentgraf, J. Valentine, N. Tapia, J. Li, and X. Zhang, “An optical “Janus” device for integrated photonics,” Adv. Mater. 22(23), 2561–2564 (2010).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Varma, V. S.

M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A 81(3), 033837 (2010).
[CrossRef]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Werner, D. H.

J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010).
[CrossRef] [PubMed]

Werner, P. L.

J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010).
[CrossRef] [PubMed]

Wu, Q.

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[CrossRef] [PubMed]

Xiong, Y.

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray optics at a deep-subwavelength scale: a transformation optics approach,” Nano Lett. 8(12), 4243–4247 (2008).
[CrossRef]

Yang, X. M.

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

Zentgraf, T.

T. Zentgraf, J. Valentine, N. Tapia, J. Li, and X. Zhang, “An optical “Janus” device for integrated photonics,” Adv. Mater. 22(23), 2561–2564 (2010).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, P.

P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak of complex shape from a perfect three-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008).
[CrossRef]

Zhang, X.

T. Zentgraf, J. Valentine, N. Tapia, J. Li, and X. Zhang, “An optical “Janus” device for integrated photonics,” Adv. Mater. 22(23), 2561–2564 (2010).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray optics at a deep-subwavelength scale: a transformation optics approach,” Nano Lett. 8(12), 4243–4247 (2008).
[CrossRef]

Adv. Mater. (1)

T. Zentgraf, J. Valentine, N. Tapia, J. Li, and X. Zhang, “An optical “Janus” device for integrated photonics,” Adv. Mater. 22(23), 2561–2564 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

J. S. King, C. W. Neff, W. Park, D. Morton, E. Forsythe, S. Blomquist, and C. J. Summers, “High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition,” Appl. Phys. Lett. 83(13), 2566 (2003).
[CrossRef]

D. P. Gaillot, E. Graugnard, J. Blair, and C. J. Summers, “Dispersion control in two-dimensional superlattice photonic crystal slab waveguides by atomic layer deposition,” Appl. Phys. Lett. 91(18), 181123 (2007).
[CrossRef]

P. Zhang, Y. Jin, and S. He, “Obtaining a nonsingular two-dimensional cloak of complex shape from a perfect three-dimensional cloak,” Appl. Phys. Lett. 93(24), 243502 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. Blair, D. Brown, V. A. Tamma, W. Park, and C. Summers, “Challenges in the fabrication of an optical frequency ground plane cloak consisting of silicon nanorod arrays,” J. Vac. Sci. Technol. B 28(6), 1222–1230 (2010).
[CrossRef]

Nano Lett. (1)

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray optics at a deep-subwavelength scale: a transformation optics approach,” Nano Lett. 8(12), 4243–4247 (2008).
[CrossRef]

Nat. Mater. (3)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

See, for review H Chen, C. T . Chan, and P Sheng, “Transformantion optics and metamaterials,” Nat. Mater. 9, 387–396 (2010).
[CrossRef]

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[CrossRef]

Nat. Photonics (2)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Opt. Express (3)

N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
[CrossRef] [PubMed]

J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010).
[CrossRef] [PubMed]

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009).
[CrossRef] [PubMed]

Phys. Rev. A (1)

M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A 81(3), 033837 (2010).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

Proc. R. Soc. A (1)

G. Milton and N. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A 462(2074), 3027–3059 (2006).
[CrossRef]

Science (5)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of the entire device structure with dimensions. (b) A low magnification SEM showing the entire device structure oriented in the same way as the schematic in (a). Progressively higher magnification SEMs showing the cloak and PBG regions are shown in (c) and (d), respectively.

Fig. 2
Fig. 2

(a) NSOM images taken over various areas of sample B. The far-right image showing the reflected beam in the cloak region is slightly enlarged compared to the rest. The measurement wavelength was 1420 nm. (b) Finite-Difference Time-Domain simulation (right) of the carpet cloak structure and the schematic (left) of the nanorod array used in the simulation. Incident beam approaches the cloak structure from the left and is reflected upward.

Fig. 3
Fig. 3

(a) A schematic of the device structure showing the area from which the NSOM images were taken. (b) NSOM images taken from sample A at various wavelengths and laser power levels. (c) NSOM images taken from sample B at various wavelengths and laser power levels.

Fig. 6
Fig. 6

Dispersion curves for (a) sample A with and without 10 nm TiO2 coating and (b) sample B with and without 5 nm TiO2 coating.

Fig. 4
Fig. 4

SEM micrographs of (a) sample B conformally coated with 5 nm thick TiO2 layer and (b) sample A coated with 10 nm thick TiO2 layer.

Fig. 5
Fig. 5

NSOM images taken over the cloak region at various wavelengths for (a) sample A with 10 nm TiO2 coating and (b) sample B with 5 nm TiO2 coating. The laser power was constant at 10 mW for all measurements.

Metrics