Abstract

We report remarkably fast and strongly wavelength-dependent gain recovery in a single SOA without the aid of an offset filter. Full gain recovery times as short as 9 ps were observed in pump-probe measurements when pumping to the blue wavelength side of a continuous wave probe, in contrast to times of 25 to 30 ps when pumping to the red wavelength side. Experimental and numerical analysis indicate that the long effective length and high gain led to deep saturation of the second half of the SOA by the probe. The consequent absorption of blue-shifted pump pulses in this region resulted in device dynamics analogous to those of the Turbo-Switch.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science 286(5444), 1523–1528 (1999).
    [CrossRef] [PubMed]
  2. W. Mathlouthi, F. Vacondio, P. Lemieux, and L. A. Rusch, “SOA gain recovery wavelength dependence: simulation and measurement using a single-color pump-probe technique,” Opt. Express 16(25), 20656–20665 (2008).
    [CrossRef] [PubMed]
  3. L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
    [CrossRef]
  4. R. Giller, R. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(9), 1061–1063 (2006).
    [CrossRef]
  5. F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
    [CrossRef]
  6. R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 12 (2000).
    [CrossRef]
  7. L. Schares, C. Schubert, C. Schmidt, H. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
    [CrossRef]
  8. A. Uskov, J. Mork, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4(5), 443–446 (1992).
    [CrossRef]
  9. R. Giller, R. Manning, and D. Cotter, “Recovery Dynamics of the'Turbo-Switch',” Optical Amplifiers and Their Applications (Optical Society of America), paper OTuC, Whistler (2006).
  10. J. Leuthold, R. Ryf, D. Maywar, S. Cabot, J. Jaques, and S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
    [CrossRef]
  11. R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19(12), 889–991 (1994).
    [CrossRef] [PubMed]
  12. R. Runser, D. Zhou, C. Coldwell, B. Wang, P. Toliver, K. Deng, I. Glesk, and P. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
    [CrossRef]
  13. J. Sokoloff, P. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
    [CrossRef]
  14. G. Talli and M. Adams, “Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam,” Opt. Commun. 245(1-6), 363–370 (2005).
    [CrossRef]
  15. H. Yu, D. Mahgerefteh, P. Cho, and J. Goldhar, ““Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” Lightwave Technology,” Journalism 17, 308–315 (2002).
  16. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
    [CrossRef]
  17. B. M. K. Stubkjaer, T. Durhuus, G. G. Joergensen, C. Joergensen, T. N. Nielsen, B. Fernier, P. Doussiere, D. Leclerc, and J. Benoit, “Semiconductor optical amplifiers as linear amplifiers, gates and wavelength converters,” in Proc. European Conference on Optical Communications (Zurich, 1993).
  18. J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauck, “Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5(11), 1300–1303 (1993).
    [CrossRef]
  19. R. Manning, D. Davies, S. Cotter, and J. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
    [CrossRef]
  20. R. Manning, X. Yang, R. Webb, R. Giller, F. Gunning, and A. Ellis, “The'Turbo-Switch'-a novel technique to increase the high-speed response of SOAs for wavelength conversion,” presented at Optical Fiber Communication Conference (Optical Society of America), paper OWS8, Anaheim (2006).
  21. N. S. Patel, K. L. Hall, and K. A. Rauschenbach, “Interferometric all-optical switches for ultrafast signal processing,” Appl. Opt. 37(14), 2831–2842 (1998).
    [CrossRef]
  22. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
    [CrossRef]
  23. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p type modulation doped MQW,” (IEEE, 2009), pp. 1–2.
  24. K. Hall, J. Mark, E. Ippen, and G. Eisenstein, “Femtosecond gain dynamics in InGaAsP optical amplifiers,” Appl. Phys. Lett. 56(18), 1740–1742 (1990).
    [CrossRef]
  25. J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: Experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
    [CrossRef]
  26. M. Eiselt, W. Pieper, and H. Weber, ““SLALOM: Semiconductor laser amplifier in a loop mirror,” Lightwave Technology,” Journalism 13, 2099–2112 (1995).
  27. J. Dong, X. Zhang, J. Xu, and D. Huang, “Filter-free ultrawideband generation based on semiconductor optical amplifier nonlinearities,” Opt. Commun. 281(4), 808–813 (2008).
    [CrossRef]
  28. G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
    [CrossRef]
  29. G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun. 218(1-3), 161–166 (2003).
    [CrossRef]
  30. J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 m InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
    [CrossRef]
  31. P. Borri, W. Langbein, J. Hvam, F. Heinrichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
    [CrossRef]

2008 (2)

W. Mathlouthi, F. Vacondio, P. Lemieux, and L. A. Rusch, “SOA gain recovery wavelength dependence: simulation and measurement using a single-color pump-probe technique,” Opt. Express 16(25), 20656–20665 (2008).
[CrossRef] [PubMed]

J. Dong, X. Zhang, J. Xu, and D. Huang, “Filter-free ultrawideband generation based on semiconductor optical amplifier nonlinearities,” Opt. Commun. 281(4), 808–813 (2008).
[CrossRef]

2007 (1)

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[CrossRef]

2006 (2)

R. Giller, R. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(9), 1061–1063 (2006).
[CrossRef]

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

2005 (1)

G. Talli and M. Adams, “Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam,” Opt. Commun. 245(1-6), 363–370 (2005).
[CrossRef]

2003 (4)

J. Leuthold, R. Ryf, D. Maywar, S. Cabot, J. Jaques, and S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
[CrossRef]

L. Schares, C. Schubert, C. Schmidt, H. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
[CrossRef]

G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun. 218(1-3), 161–166 (2003).
[CrossRef]

2002 (2)

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

H. Yu, D. Mahgerefteh, P. Cho, and J. Goldhar, ““Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” Lightwave Technology,” Journalism 17, 308–315 (2002).

2001 (1)

R. Runser, D. Zhou, C. Coldwell, B. Wang, P. Toliver, K. Deng, I. Glesk, and P. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

2000 (3)

R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 12 (2000).
[CrossRef]

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 m InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

P. Borri, W. Langbein, J. Hvam, F. Heinrichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

1999 (1)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

1998 (2)

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

N. S. Patel, K. L. Hall, and K. A. Rauschenbach, “Interferometric all-optical switches for ultrafast signal processing,” Appl. Opt. 37(14), 2831–2842 (1998).
[CrossRef]

1995 (1)

M. Eiselt, W. Pieper, and H. Weber, ““SLALOM: Semiconductor laser amplifier in a loop mirror,” Lightwave Technology,” Journalism 13, 2099–2112 (1995).

1994 (2)

R. Manning, D. Davies, S. Cotter, and J. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
[CrossRef]

R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19(12), 889–991 (1994).
[CrossRef] [PubMed]

1993 (2)

J. Sokoloff, P. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauck, “Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5(11), 1300–1303 (1993).
[CrossRef]

1992 (2)

A. Uskov, J. Mork, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4(5), 443–446 (1992).
[CrossRef]

J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: Experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
[CrossRef]

1990 (1)

K. Hall, J. Mark, E. Ippen, and G. Eisenstein, “Femtosecond gain dynamics in InGaAsP optical amplifiers,” Appl. Phys. Lett. 56(18), 1740–1742 (1990).
[CrossRef]

Adams, M.

G. Talli and M. Adams, “Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam,” Opt. Commun. 245(1-6), 363–370 (2005).
[CrossRef]

G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun. 218(1-3), 161–166 (2003).
[CrossRef]

G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
[CrossRef]

Bennion, I.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[CrossRef]

Bhardwaj, A.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

Bimberg, D.

P. Borri, W. Langbein, J. Hvam, F. Heinrichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Borri, P.

P. Borri, W. Langbein, J. Hvam, F. Heinrichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

Cabot, S.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

J. Leuthold, R. Ryf, D. Maywar, S. Cabot, J. Jaques, and S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
[CrossRef]

Cho, P.

H. Yu, D. Mahgerefteh, P. Cho, and J. Goldhar, ““Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” Lightwave Technology,” Journalism 17, 308–315 (2002).

Coldwell, C.

R. Runser, D. Zhou, C. Coldwell, B. Wang, P. Toliver, K. Deng, I. Glesk, and P. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Cotter, D.

R. Giller, R. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(9), 1061–1063 (2006).
[CrossRef]

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Cotter, S.

R. Manning, D. Davies, S. Cotter, and J. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
[CrossRef]

Davies, D.

R. Manning, D. Davies, S. Cotter, and J. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
[CrossRef]

Davies, D. A. O.

R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19(12), 889–991 (1994).
[CrossRef] [PubMed]

de Waardt, H.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[CrossRef]

Deng, K.

R. Runser, D. Zhou, C. Coldwell, B. Wang, P. Toliver, K. Deng, I. Glesk, and P. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Dong, J.

J. Dong, X. Zhang, J. Xu, and D. Huang, “Filter-free ultrawideband generation based on semiconductor optical amplifier nonlinearities,” Opt. Commun. 281(4), 808–813 (2008).
[CrossRef]

Dorren, H.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[CrossRef]

Eckner, J.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 m InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

Eiselt, M.

M. Eiselt, W. Pieper, and H. Weber, ““SLALOM: Semiconductor laser amplifier in a loop mirror,” Lightwave Technology,” Journalism 13, 2099–2112 (1995).

Eisenstein, G.

K. Hall, J. Mark, E. Ippen, and G. Eisenstein, “Femtosecond gain dynamics in InGaAsP optical amplifiers,” Appl. Phys. Lett. 56(18), 1740–1742 (1990).
[CrossRef]

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Giller, R.

R. Giller, R. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(9), 1061–1063 (2006).
[CrossRef]

Girardin, F.

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

Glance, B.

J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauck, “Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5(11), 1300–1303 (1993).
[CrossRef]

Glesk, I.

R. Runser, D. Zhou, C. Coldwell, B. Wang, P. Toliver, K. Deng, I. Glesk, and P. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

J. Sokoloff, P. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

Gnauck, A.

J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauck, “Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5(11), 1300–1303 (1993).
[CrossRef]

Goldhar, J.

H. Yu, D. Mahgerefteh, P. Cho, and J. Goldhar, ““Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” Lightwave Technology,” Journalism 17, 308–315 (2002).

Guekos, G.

L. Schares, C. Schubert, C. Schmidt, H. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 12 (2000).
[CrossRef]

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 m InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

Gutierrez-Castrejon, R.

R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 12 (2000).
[CrossRef]

Hall, K.

K. Hall, J. Mark, E. Ippen, and G. Eisenstein, “Femtosecond gain dynamics in InGaAsP optical amplifiers,” Appl. Phys. Lett. 56(18), 1740–1742 (1990).
[CrossRef]

Hall, K. L.

N. S. Patel, K. L. Hall, and K. A. Rauschenbach, “Interferometric all-optical switches for ultrafast signal processing,” Appl. Opt. 37(14), 2831–2842 (1998).
[CrossRef]

Heinrichsdorff, F.

P. Borri, W. Langbein, J. Hvam, F. Heinrichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

Houbavlis, A.

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

Huang, D.

J. Dong, X. Zhang, J. Xu, and D. Huang, “Filter-free ultrawideband generation based on semiconductor optical amplifier nonlinearities,” Opt. Commun. 281(4), 808–813 (2008).
[CrossRef]

Hvam, J.

P. Borri, W. Langbein, J. Hvam, F. Heinrichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

Ippen, E.

K. Hall, J. Mark, E. Ippen, and G. Eisenstein, “Femtosecond gain dynamics in InGaAsP optical amplifiers,” Appl. Phys. Lett. 56(18), 1740–1742 (1990).
[CrossRef]

Ito, Y.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

Jaques, J.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

J. Leuthold, R. Ryf, D. Maywar, S. Cabot, J. Jaques, and S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
[CrossRef]

Kane, M.

J. Sokoloff, P. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

Kang, I.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

Kawaguchi, H.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Khoe, G.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[CrossRef]

Koonen, A.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[CrossRef]

Langbein, W.

P. Borri, W. Langbein, J. Hvam, F. Heinrichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

Lemieux, P.

W. Mathlouthi, F. Vacondio, P. Lemieux, and L. A. Rusch, “SOA gain recovery wavelength dependence: simulation and measurement using a single-color pump-probe technique,” Opt. Express 16(25), 20656–20665 (2008).
[CrossRef] [PubMed]

Leuthold, J.

J. Leuthold, R. Ryf, D. Maywar, S. Cabot, J. Jaques, and S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
[CrossRef]

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 m InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

Li, Z.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[CrossRef]

Liu, Y.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[CrossRef]

Lucek, J.

R. Manning, D. Davies, S. Cotter, and J. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
[CrossRef]

Mahgerefteh, D.

H. Yu, D. Mahgerefteh, P. Cho, and J. Goldhar, ““Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” Lightwave Technology,” Journalism 17, 308–315 (2002).

Manning, R.

R. Giller, R. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(9), 1061–1063 (2006).
[CrossRef]

R. Manning, D. Davies, S. Cotter, and J. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
[CrossRef]

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19(12), 889–991 (1994).
[CrossRef] [PubMed]

Mao, M.

P. Borri, W. Langbein, J. Hvam, F. Heinrichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

Mark, J.

J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: Experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
[CrossRef]

A. Uskov, J. Mork, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4(5), 443–446 (1992).
[CrossRef]

K. Hall, J. Mark, E. Ippen, and G. Eisenstein, “Femtosecond gain dynamics in InGaAsP optical amplifiers,” Appl. Phys. Lett. 56(18), 1740–1742 (1990).
[CrossRef]

Mathlouthi, W.

W. Mathlouthi, F. Vacondio, P. Lemieux, and L. A. Rusch, “SOA gain recovery wavelength dependence: simulation and measurement using a single-color pump-probe technique,” Opt. Express 16(25), 20656–20665 (2008).
[CrossRef] [PubMed]

Mayer, M.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 m InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

Maywar, D.

J. Leuthold, R. Ryf, D. Maywar, S. Cabot, J. Jaques, and S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
[CrossRef]

Melchior, H.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 m InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

Mork, J.

A. Uskov, J. Mork, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4(5), 443–446 (1992).
[CrossRef]

Mørk, J.

J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: Experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
[CrossRef]

Neilson, D.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Occhi, L.

L. Schares, C. Schubert, C. Schmidt, H. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 12 (2000).
[CrossRef]

Patel, N. S.

N. S. Patel, K. L. Hall, and K. A. Rauschenbach, “Interferometric all-optical switches for ultrafast signal processing,” Appl. Opt. 37(14), 2831–2842 (1998).
[CrossRef]

Patel, S.

J. Leuthold, R. Ryf, D. Maywar, S. Cabot, J. Jaques, and S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
[CrossRef]

Perino, J.

J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauck, “Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5(11), 1300–1303 (1993).
[CrossRef]

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Pieper, W.

M. Eiselt, W. Pieper, and H. Weber, ““SLALOM: Semiconductor laser amplifier in a loop mirror,” Lightwave Technology,” Journalism 13, 2099–2112 (1995).

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Prucnal, P.

R. Runser, D. Zhou, C. Coldwell, B. Wang, P. Toliver, K. Deng, I. Glesk, and P. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

J. Sokoloff, P. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

Rauschenbach, K. A.

N. S. Patel, K. L. Hall, and K. A. Rauschenbach, “Interferometric all-optical switches for ultrafast signal processing,” Appl. Opt. 37(14), 2831–2842 (1998).
[CrossRef]

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Runser, R.

R. Runser, D. Zhou, C. Coldwell, B. Wang, P. Toliver, K. Deng, I. Glesk, and P. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Rusch, L. A.

W. Mathlouthi, F. Vacondio, P. Lemieux, and L. A. Rusch, “SOA gain recovery wavelength dependence: simulation and measurement using a single-color pump-probe technique,” Opt. Express 16(25), 20656–20665 (2008).
[CrossRef] [PubMed]

Ryf, R.

J. Leuthold, R. Ryf, D. Maywar, S. Cabot, J. Jaques, and S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
[CrossRef]

Sauer, N.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

Schares, L.

L. Schares, C. Schubert, C. Schmidt, H. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 12 (2000).
[CrossRef]

Schmidt, C.

L. Schares, C. Schubert, C. Schmidt, H. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

Schubert, C.

L. Schares, C. Schubert, C. Schmidt, H. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

Shu, X.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[CrossRef]

Sokoloff, J.

J. Sokoloff, P. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

Talli, G.

G. Talli and M. Adams, “Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam,” Opt. Commun. 245(1-6), 363–370 (2005).
[CrossRef]

G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun. 218(1-3), 161–166 (2003).
[CrossRef]

G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
[CrossRef]

Tangdiongga, E.

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[CrossRef]

Toliver, P.

R. Runser, D. Zhou, C. Coldwell, B. Wang, P. Toliver, K. Deng, I. Glesk, and P. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Uskov, A.

A. Uskov, J. Mork, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4(5), 443–446 (1992).
[CrossRef]

Vacondio, F.

W. Mathlouthi, F. Vacondio, P. Lemieux, and L. A. Rusch, “SOA gain recovery wavelength dependence: simulation and measurement using a single-color pump-probe technique,” Opt. Express 16(25), 20656–20665 (2008).
[CrossRef] [PubMed]

Wang, B.

R. Runser, D. Zhou, C. Coldwell, B. Wang, P. Toliver, K. Deng, I. Glesk, and P. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Weber, H.

L. Schares, C. Schubert, C. Schmidt, H. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

M. Eiselt, W. Pieper, and H. Weber, ““SLALOM: Semiconductor laser amplifier in a loop mirror,” Lightwave Technology,” Journalism 13, 2099–2112 (1995).

Wiesenfeld, J.

J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauck, “Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5(11), 1300–1303 (1993).
[CrossRef]

Xu, J.

J. Dong, X. Zhang, J. Xu, and D. Huang, “Filter-free ultrawideband generation based on semiconductor optical amplifier nonlinearities,” Opt. Commun. 281(4), 808–813 (2008).
[CrossRef]

Yu, H.

H. Yu, D. Mahgerefteh, P. Cho, and J. Goldhar, ““Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” Lightwave Technology,” Journalism 17, 308–315 (2002).

Zellweger, C.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 m InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

Zhang, L.

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

Zhang, X.

J. Dong, X. Zhang, J. Xu, and D. Huang, “Filter-free ultrawideband generation based on semiconductor optical amplifier nonlinearities,” Opt. Commun. 281(4), 808–813 (2008).
[CrossRef]

Zhou, D.

R. Runser, D. Zhou, C. Coldwell, B. Wang, P. Toliver, K. Deng, I. Glesk, and P. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Appl. Opt. (1)

N. S. Patel, K. L. Hall, and K. A. Rauschenbach, “Interferometric all-optical switches for ultrafast signal processing,” Appl. Opt. 37(14), 2831–2842 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

K. Hall, J. Mark, E. Ippen, and G. Eisenstein, “Femtosecond gain dynamics in InGaAsP optical amplifiers,” Appl. Phys. Lett. 56(18), 1740–1742 (1990).
[CrossRef]

J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: Experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
[CrossRef]

Electron. Lett. (1)

R. Manning, D. Davies, S. Cotter, and J. Lucek, “Enhanced recovery rates in semiconductor laser amplifiers using optical pumping,” Electron. Lett. 30(10), 787–788 (1994).
[CrossRef]

IEEE J. Quantum Electron. (4)

G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
[CrossRef]

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38(1), 54–60 (2002).
[CrossRef]

R. Gutierrez-Castrejon, L. Schares, L. Occhi, and G. Guekos, “Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length,” IEEE J. Quantum Electron. 36(12), 12 (2000).
[CrossRef]

L. Schares, C. Schubert, C. Schmidt, H. Weber, L. Occhi, and G. Guekos, “Phase dynamics of semiconductor optical amplifiers at 10-40 GHz,” IEEE J. Quantum Electron. 39(11), 1394–1408 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Borri, W. Langbein, J. Hvam, F. Heinrichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006).
[CrossRef]

A. Uskov, J. Mork, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4(5), 443–446 (1992).
[CrossRef]

R. Giller, R. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(9), 1061–1063 (2006).
[CrossRef]

F. Girardin, G. Guekos, and A. Houbavlis, “Gain recovery of bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10(6), 784–786 (1998).
[CrossRef]

J. Sokoloff, P. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5(7), 787–790 (1993).
[CrossRef]

J. Wiesenfeld, B. Glance, J. Perino, and A. Gnauck, “Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5(11), 1300–1303 (1993).
[CrossRef]

J. Appl. Phys. (1)

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 m InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

J. Lightwave Technol. (2)

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[CrossRef]

J. Leuthold, R. Ryf, D. Maywar, S. Cabot, J. Jaques, and S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
[CrossRef]

Journalism (2)

H. Yu, D. Mahgerefteh, P. Cho, and J. Goldhar, ““Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” Lightwave Technology,” Journalism 17, 308–315 (2002).

M. Eiselt, W. Pieper, and H. Weber, ““SLALOM: Semiconductor laser amplifier in a loop mirror,” Lightwave Technology,” Journalism 13, 2099–2112 (1995).

Opt. Commun. (3)

J. Dong, X. Zhang, J. Xu, and D. Huang, “Filter-free ultrawideband generation based on semiconductor optical amplifier nonlinearities,” Opt. Commun. 281(4), 808–813 (2008).
[CrossRef]

G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun. 218(1-3), 161–166 (2003).
[CrossRef]

G. Talli and M. Adams, “Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam,” Opt. Commun. 245(1-6), 363–370 (2005).
[CrossRef]

Opt. Express (1)

W. Mathlouthi, F. Vacondio, P. Lemieux, and L. A. Rusch, “SOA gain recovery wavelength dependence: simulation and measurement using a single-color pump-probe technique,” Opt. Express 16(25), 20656–20665 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19(12), 889–991 (1994).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

R. Runser, D. Zhou, C. Coldwell, B. Wang, P. Toliver, K. Deng, I. Glesk, and P. Prucnal, “Interferometric ultrafast SOA-based optical switches: From devices to applications,” Opt. Quantum Electron. 33(7/10), 841–874 (2001).
[CrossRef]

Science (1)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high- speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Other (4)

R. Giller, R. Manning, and D. Cotter, “Recovery Dynamics of the'Turbo-Switch',” Optical Amplifiers and Their Applications (Optical Society of America), paper OTuC, Whistler (2006).

B. M. K. Stubkjaer, T. Durhuus, G. G. Joergensen, C. Joergensen, T. N. Nielsen, B. Fernier, P. Doussiere, D. Leclerc, and J. Benoit, “Semiconductor optical amplifiers as linear amplifiers, gates and wavelength converters,” in Proc. European Conference on Optical Communications (Zurich, 1993).

L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. Neilson, “Significant reduction of recovery time in semiconductor optical amplifier using p type modulation doped MQW,” (IEEE, 2009), pp. 1–2.

R. Manning, X. Yang, R. Webb, R. Giller, F. Gunning, and A. Ellis, “The'Turbo-Switch'-a novel technique to increase the high-speed response of SOAs for wavelength conversion,” presented at Optical Fiber Communication Conference (Optical Society of America), paper OWS8, Anaheim (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the setup for measuring the gain and phase responses of the SOA. Pump pulses and a cw probe beam were combined at a 50:50 coupler before entering the SOA. The DI was not present when the gain was measured but it was present when the phase was measured. The signal from the SOA was amplified using an EDFA whose filtered output was sent into a 90:10 coupler, with the larger proportion of the signal entering into the optical sampling oscilloscope. (BPF = bandpass filter, PC = polarization controller).

Fig. 2
Fig. 2

(a) Normalized gain and (b) phase change as a function of time with a fixed 1550nm probe

Fig. 3
Fig. 3

(a) Gain recovery times for several probe wavelengths and (b) gain and phase recovery times for a fixed 1550nm probe as a function of pump-probe separation. The lines joining the points are a guide for the eye only.

Fig. 4
Fig. 4

10/90 gain recovery time as a function of (a) probe - gain peak separation and (b) pump - probe separation with the pump fixed in each separate curve. The lines joining the points are a guide for the eye only

Fig. 5
Fig. 5

Graphs of (a) gain and (b) phase as a function of time for the optimum pump-probe separation.

Fig. 6
Fig. 6

Gain spectra with a −3.5 dBm cw input whose wavelength is varied, and with no cw input.

Fig. 7
Fig. 7

Carrier density along the length of the SOA. The value of z is normalized relative to L, the length of the SOA active region (L is 2.2mm for this device).

Fig. 8
Fig. 8

(a) Gain spectra at various points within the SOA.. The red pump (pump 1, red dashed line) gain is always positive but the blue pump (pump 2, blue dashed line) gain is negative beyond the middle of the SOA. (b) Total signal power (pump + probe) at various points within the SOA. The red pump pulses increase in energy throughout whereas the blue pump pulses lose energy for z>L/2.

Fig. 9
Fig. 9

Carrier density time response at different points within the SOA

Fig. 10
Fig. 10

Comparison between simulated probe gain (dashed lines) and measured gain (solid lines).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 1 = g 0 E 0 e i φ 0 + g ( t ) E 0 e i φ ( t ) = g 0 E 0 e i φ 0 ( 1 + g ( t ) e i Δ φ ( t ) g 0 )
P E 1 * E 1 = G 0 | E 0 | 2 ( 1 + G ( t ) G 0 + 2 G ( t ) G 0 cos ( Δ φ ( t ) ) )
T = 1 4 ( 1 + G ( t ) G 0 + 2 G ( t ) G 0 cos ( Δ φ ( t ) ) )
Δ ϕ ( t ) = cos 1 [ 4 T G ( t ) G 0 1 2 G ( t ) G 0 ]

Metrics