Abstract

A novel holographic filter using a photopolymer-based cascaded volume Bragg gratings (CVBGs) is proposed and experimentally demonstrated in this paper. The filter was designed to attain a narrow spectral bandwidth characteristic without increasing the thickness of photopolymer used, at 1550nm operating wavelength region. The proposed filter is consisted of a 45° slanted grating working as a surface-normal input/output coupler and a non-slanted reflection grating acting as a narrow-band wavelength selective filter, and it was embedded in the photopolymer film as a waveguide mode. The fabricated filter showed that the bandwidth at the center wavelength of 1547.85nm was about 0.45nm.

© 2010 OSA

Full Article  |  PDF Article
Related Articles
Holographic Bragg grating input–output couplers for polymer waveguides at an 850-nm wavelength

Qiang Huang and Paul R. Ashley
Appl. Opt. 36(6) 1198-1203 (1997)

Narrow-bandwidth holographic reflection filters with photopolymer films

Guoquan Zhang, Germano Montemezzani, and Peter Günter
Appl. Opt. 40(15) 2423-2427 (2001)

Holographic polarization-selective module based on a small Dove prism coupler for magneto-optical pickup heads

Chang-Won Shin, Viet-Tien Vu, Nam Kim, Jun-Won An, Dongwoo Suh, Yongwoo Park, Hojun Ryu, Mun-Cheol Paek, and Hyeon-Bong Pyo
Appl. Opt. 44(20) 4248-4254 (2005)

References

  • View by:
  • |
  • |
  • |

  1. K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive materials and their applications 3, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, 2007), pp. 295–317.
  2. W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, and A. M. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256–267 (1991).
    [Crossref]
  3. M. L. Jones, R. P. Kenan, and C. M. Verber, “Rectangular characteristic gratings for waveguide input and output coupling,” Appl. Opt. 34(20), 4149–4158 (1995).
    [Crossref] [PubMed]
  4. S. D. Wu, E. N. Glytsis, and T. K. Gaylord, “Optimization of finite-length input volume holographic grating couplers illuminated by finite-width incident beams,” Appl. Opt. 44(21), 4435–4446 (2005).
    [Crossref] [PubMed]
  5. Q. Huang and P. R. Ashley, “Holographic Bragg grating input-output couplers for polymer waveguides at an 850-nm wavelength,” Appl. Opt. 36(6), 1198–1203 (1997).
    [Crossref] [PubMed]
  6. H. Kogelnik and T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).
  7. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  8. W. Driemeier, “Bragg-effect grating couplers integrated in multicomponent polymeric waveguides,” Opt. Lett. 15(13), 725–727 (1990).
    [Crossref] [PubMed]
  9. I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of gaussian beam diffraction on diffraction on volume Bragg gratings in PTR glass,” Proc. SPIE 5742, 183–194 (2006).
    [Crossref]
  10. J. M. Tsui, C. Thompson, V. Mehta, J. M. Roth, V. I. Smirnov, and L. B. Glebov, “Coupled-wave analysis of apodized volume gratings,” Opt. Express 12(26), 6642–6653 (2004).
    [Crossref] [PubMed]

2006 (1)

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of gaussian beam diffraction on diffraction on volume Bragg gratings in PTR glass,” Proc. SPIE 5742, 183–194 (2006).
[Crossref]

2005 (1)

2004 (1)

1997 (1)

1995 (1)

1991 (1)

W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, and A. M. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256–267 (1991).
[Crossref]

1990 (1)

1970 (1)

H. Kogelnik and T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Ashley, P. R.

Ciapurin, I. V.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of gaussian beam diffraction on diffraction on volume Bragg gratings in PTR glass,” Proc. SPIE 5742, 183–194 (2006).
[Crossref]

Driemeier, W.

Gambogi, W. J.

W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, and A. M. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256–267 (1991).
[Crossref]

Gaylord, T. K.

Gerstadt, W. A.

W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, and A. M. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256–267 (1991).
[Crossref]

Glebov, L. B.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of gaussian beam diffraction on diffraction on volume Bragg gratings in PTR glass,” Proc. SPIE 5742, 183–194 (2006).
[Crossref]

J. M. Tsui, C. Thompson, V. Mehta, J. M. Roth, V. I. Smirnov, and L. B. Glebov, “Coupled-wave analysis of apodized volume gratings,” Opt. Express 12(26), 6642–6653 (2004).
[Crossref] [PubMed]

Glytsis, E. N.

Huang, Q.

Jones, M. L.

Kenan, R. P.

Kogelnik, H.

H. Kogelnik and T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Mackara, S. R.

W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, and A. M. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256–267 (1991).
[Crossref]

Mehta, V.

Roth, J. M.

Smirnov, V. I.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of gaussian beam diffraction on diffraction on volume Bragg gratings in PTR glass,” Proc. SPIE 5742, 183–194 (2006).
[Crossref]

J. M. Tsui, C. Thompson, V. Mehta, J. M. Roth, V. I. Smirnov, and L. B. Glebov, “Coupled-wave analysis of apodized volume gratings,” Opt. Express 12(26), 6642–6653 (2004).
[Crossref] [PubMed]

Sosnowski, T. P.

H. Kogelnik and T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).

Thompson, C.

Tsui, J. M.

Verber, C. M.

Weber, A. M.

W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, and A. M. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256–267 (1991).
[Crossref]

Wu, S. D.

Appl. Opt. (3)

Bell Syst. Tech. J. (2)

H. Kogelnik and T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of gaussian beam diffraction on diffraction on volume Bragg gratings in PTR glass,” Proc. SPIE 5742, 183–194 (2006).
[Crossref]

W. J. Gambogi, W. A. Gerstadt, S. R. Mackara, and A. M. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256–267 (1991).
[Crossref]

Other (1)

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive materials and their applications 3, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, 2007), pp. 295–317.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of a waveguide-CVBGs filter.

Fig. 2
Fig. 2

Experimental setup for fabricating 45 -VBG.

Fig. 3
Fig. 3

Experimental setup for testing the fabricated waveguide-CVBGs filter.

Fig. 4
Fig. 4

Normalized reflected intensity versus the (internal) incident angle for a fixed coupling wavelength.

Fig. 5
Fig. 5

Spectral response of the transmittance of the 45 -VBG for the fixed input coupling angle.

Fig. 6
Fig. 6

Normalized reflected intensity versus wavelength for the fixed input coupling angle.

Fig. 7
Fig. 7

Photograph of the intensity profile of the reflected output beam obtained by the IR camera.

Metrics