Abstract

We report multicolor upconversion emissions including the blue-violet, green, and red lights in a Tm3+/Er3+ codoped tellurite glass photonic microwire between two silica fiber tapers. A silica fiber is tapered until its evanescent field is exposed and then angled-cleaved at the tapered center to divide the tapered fibers into two parts. A tellurite glass is melted by a gas flame to cluster into a sphere at the tip of one tapered fiber. The other angled-cleaved tapered fiber is blended into the melted tellurite glass. When the tellurite glass is melted, the two silica fiber tapers are simultaneously moving outwards to draw the tellurite glass into a microwire in between. The advantage of angled-cleaving on fiber tapers is to avoid cavity resonances in high index photonic microwire. Thus, the broadband white light can be transmitted between silica fibers and a special optical property like high intensity upconversion emission can be achieved. A cw 1064 nm Nd:YAG laser light is launched into the Tm3+/Er3+ codoped tellurite microwire through a silica fiber taper to generate the multicolor upconversion emissions, including the blue-violet, green, and red lights, simultaneously.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
    [CrossRef]
  2. S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
    [CrossRef] [PubMed]
  3. T. Sun, G. Kai, Z. Wang, S. Yuan, and X. Dong, “Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region,” Chin. Opt. Lett. 6(2), 93–95 (2008).
    [CrossRef]
  4. J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
    [CrossRef]
  5. K. P. Chen, P. R. Herman, and R. Tam, “Strong fiber Bragg grating fabrication by hybrid 157- and 248-nm laser exposure,” IEEE Photon. Technol. Lett. 14(2), 170–172 (2002).
    [CrossRef]
  6. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [CrossRef] [PubMed]
  7. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
    [CrossRef]
  8. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber laser with 188W free-running and > 100W tunable output power,” Opt. Express 13(13), 4916–4921 (2005).
    [CrossRef] [PubMed]
  9. P. G. Kazansky, L. Dong, and P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
    [CrossRef] [PubMed]
  10. P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009).
    [CrossRef]
  11. T. Y. Tsai and Y. C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express 17(3), 1429–1434 (2009).
    [CrossRef] [PubMed]
  12. J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibers,” Opt. Commun. 204, 111–118 (2002).
  13. H. Masuda, S. Kawai, K. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photon. Technol. Lett. 10(4), 516–518 (1998).
    [CrossRef]
  14. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
    [CrossRef] [PubMed]
  15. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
    [CrossRef]
  16. S. Sudo, Optical Fiber Amplifiers: Materials, Devices, and Applications (Artech House, Boston, 1997), Chaps. 2 and 4.
  17. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005).
    [CrossRef] [PubMed]
  18. R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
    [CrossRef] [PubMed]
  19. M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29(8), 2325–2333 (1993).
    [CrossRef]
  20. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [CrossRef] [PubMed]
  21. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 microm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009).
    [CrossRef] [PubMed]
  22. Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33(21), 2565–2567 (2008).
    [PubMed]
  23. L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, “Fabrication of submicron-diameter silica fibers using electric strip heater,” Opt. Express 14(12), 5055–5060 (2006).
    [CrossRef] [PubMed]
  24. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  25. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
    [CrossRef] [PubMed]
  26. C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
    [CrossRef] [PubMed]
  27. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
    [CrossRef] [PubMed]
  28. K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
    [CrossRef] [PubMed]
  29. C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
    [CrossRef] [PubMed]
  30. A. S. L. Gomes, C. B. de Araujo, B. J. Ainslie, and S. P. Craig-Ryan, “Amplified spontaneous emission in Tm3+-doped monomode optical fibers in the visible region,” Appl. Phys. Lett. 57(21), 2169–2171 (1990).
    [CrossRef]
  31. E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glass for 1470 nm fiber amplifier,” J. Appl. Phys. 92(1), 112–117 (2002).
    [CrossRef]
  32. S. Shen, A. Jha, L. Huang, and P. Joshi, “980-nm diode-pumped Tm(3+)/Yb(3+)-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30(12), 1437–1439 (2005).
    [CrossRef] [PubMed]
  33. R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
    [CrossRef] [PubMed]
  34. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  35. G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
    [CrossRef] [PubMed]
  36. Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17(24), 21813–21818 (2009).
    [CrossRef] [PubMed]
  37. T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
    [CrossRef]
  38. D. V. Talavera and E. B. Mejia, “Blue-upconversion Tm3+-doped fiber laser pumped by a multiline Raman source,” J. Appl. Phys. 97(5), 053102 (2005).
    [CrossRef]
  39. A. Patra, S. Saha, M. A. R. C. Alencar, N. Rakov, and G. S. Maciel, “Blue upconversion emission of Tm3+-Yb3+ in ZrO2 nancrystals: role of Yb3+ ions,” Chem. Phys. Lett. 407(4-6), 477–481 (2005).
    [CrossRef]
  40. G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Infrared-to-ultraviolet up-conversion luminescence from AlF3:0.2%Tm3+, 10%Yb3+ particles prepared by pulsed laser ablation,” Solid State Commun. 125(7-8), 377–379 (2003).
    [CrossRef]
  41. D. Michael, and C. Brian, “Amplification device utilizing thulium doped modified silicate optical fiber,” US patent 6924928 (2005).
  42. S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006).
    [CrossRef] [PubMed]

2010

J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
[CrossRef]

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
[CrossRef] [PubMed]

2009

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009).
[CrossRef]

T. Y. Tsai and Y. C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express 17(3), 1429–1434 (2009).
[CrossRef] [PubMed]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 microm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009).
[CrossRef] [PubMed]

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

2008

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33(21), 2565–2567 (2008).
[PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

T. Sun, G. Kai, Z. Wang, S. Yuan, and X. Dong, “Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region,” Chin. Opt. Lett. 6(2), 93–95 (2008).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

2007

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

2006

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, “Fabrication of submicron-diameter silica fibers using electric strip heater,” Opt. Express 14(12), 5055–5060 (2006).
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006).
[CrossRef] [PubMed]

2005

S. Shen, A. Jha, L. Huang, and P. Joshi, “980-nm diode-pumped Tm(3+)/Yb(3+)-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30(12), 1437–1439 (2005).
[CrossRef] [PubMed]

D. V. Talavera and E. B. Mejia, “Blue-upconversion Tm3+-doped fiber laser pumped by a multiline Raman source,” J. Appl. Phys. 97(5), 053102 (2005).
[CrossRef]

A. Patra, S. Saha, M. A. R. C. Alencar, N. Rakov, and G. S. Maciel, “Blue upconversion emission of Tm3+-Yb3+ in ZrO2 nancrystals: role of Yb3+ ions,” Chem. Phys. Lett. 407(4-6), 477–481 (2005).
[CrossRef]

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005).
[CrossRef] [PubMed]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber laser with 188W free-running and > 100W tunable output power,” Opt. Express 13(13), 4916–4921 (2005).
[CrossRef] [PubMed]

2003

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Infrared-to-ultraviolet up-conversion luminescence from AlF3:0.2%Tm3+, 10%Yb3+ particles prepared by pulsed laser ablation,” Solid State Commun. 125(7-8), 377–379 (2003).
[CrossRef]

2002

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glass for 1470 nm fiber amplifier,” J. Appl. Phys. 92(1), 112–117 (2002).
[CrossRef]

K. P. Chen, P. R. Herman, and R. Tam, “Strong fiber Bragg grating fabrication by hybrid 157- and 248-nm laser exposure,” IEEE Photon. Technol. Lett. 14(2), 170–172 (2002).
[CrossRef]

J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibers,” Opt. Commun. 204, 111–118 (2002).

1999

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[CrossRef]

1998

H. Masuda, S. Kawai, K. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photon. Technol. Lett. 10(4), 516–518 (1998).
[CrossRef]

1994

P. G. Kazansky, L. Dong, and P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[CrossRef] [PubMed]

1993

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29(8), 2325–2333 (1993).
[CrossRef]

1990

A. S. L. Gomes, C. B. de Araujo, B. J. Ainslie, and S. P. Craig-Ryan, “Amplified spontaneous emission in Tm3+-doped monomode optical fibers in the visible region,” Appl. Phys. Lett. 57(21), 2169–2171 (1990).
[CrossRef]

1982

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
[CrossRef]

Aers, G.

C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

Aguiló, M.

S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006).
[CrossRef] [PubMed]

Aida, K.

H. Masuda, S. Kawai, K. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photon. Technol. Lett. 10(4), 516–518 (1998).
[CrossRef]

Ainslie, B. J.

A. S. L. Gomes, C. B. de Araujo, B. J. Ainslie, and S. P. Craig-Ryan, “Amplified spontaneous emission in Tm3+-doped monomode optical fibers in the visible region,” Appl. Phys. Lett. 57(21), 2169–2171 (1990).
[CrossRef]

Alencar, M. A. R. C.

A. Patra, S. Saha, M. A. R. C. Alencar, N. Rakov, and G. S. Maciel, “Blue upconversion emission of Tm3+-Yb3+ in ZrO2 nancrystals: role of Yb3+ ions,” Chem. Phys. Lett. 407(4-6), 477–481 (2005).
[CrossRef]

Allen, P. J.

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

Andres, M. V.

J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
[CrossRef]

Anheier, N. C.

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Asimakis, S.

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Asobe, M.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29(8), 2325–2333 (1993).
[CrossRef]

Bandyopadhyay, S.

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

Barton, J. S.

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

Bennion, I.

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

Birks, T. A.

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005).
[CrossRef] [PubMed]

Bjurshagen, S.

S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006).
[CrossRef] [PubMed]

Bookey, H. T.

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

Buerger, H.

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glass for 1470 nm fiber amplifier,” J. Appl. Phys. 92(1), 112–117 (2002).
[CrossRef]

Canning, J.

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

Cascante-Vindas, J.

J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
[CrossRef]

Chaudhari, C.

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 microm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009).
[CrossRef] [PubMed]

Chen, K. P.

K. P. Chen, P. R. Herman, and R. Tam, “Strong fiber Bragg grating fabrication by hybrid 157- and 248-nm laser exposure,” IEEE Photon. Technol. Lett. 14(2), 170–172 (2002).
[CrossRef]

Chen, X.

L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, “Fabrication of submicron-diameter silica fibers using electric strip heater,” Opt. Express 14(12), 5055–5060 (2006).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33(21), 2565–2567 (2008).
[PubMed]

L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, “Fabrication of submicron-diameter silica fibers using electric strip heater,” Opt. Express 14(12), 5055–5060 (2006).
[CrossRef] [PubMed]

Cheng, J.

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

Clarkson, W. A.

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber laser with 188W free-running and > 100W tunable output power,” Opt. Express 13(13), 4916–4921 (2005).
[CrossRef] [PubMed]

Cook, K.

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

Cordeiro, C. M. B.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005).
[CrossRef] [PubMed]

Craig-Ryan, S. P.

A. S. L. Gomes, C. B. de Araujo, B. J. Ainslie, and S. P. Craig-Ryan, “Amplified spontaneous emission in Tm3+-doped monomode optical fibers in the visible region,” Appl. Phys. Lett. 57(21), 2169–2171 (1990).
[CrossRef]

Cronin-Golomb, M.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

Dalacu, D.

C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

de Araujo, C. B.

A. S. L. Gomes, C. B. de Araujo, B. J. Ainslie, and S. P. Craig-Ryan, “Amplified spontaneous emission in Tm3+-doped monomode optical fibers in the visible region,” Appl. Phys. Lett. 57(21), 2169–2171 (1990).
[CrossRef]

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

Díaz, F.

S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006).
[CrossRef] [PubMed]

Diez, A.

J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
[CrossRef]

Ding, Y.

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

Domachuk, P.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

Dong, L.

P. G. Kazansky, L. Dong, and P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[CrossRef] [PubMed]

Dong, X.

T. Sun, G. Kai, Z. Wang, S. Yuan, and X. Dong, “Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region,” Chin. Opt. Lett. 6(2), 93–95 (2008).
[CrossRef]

Dragic, P. D.

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009).
[CrossRef]

Ebendorff-Heidepriem, H.

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Efimov, O. M.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[CrossRef]

Eggleton, B. J.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

Fang, Y. C.

T. Y. Tsai and Y. C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express 17(3), 1429–1434 (2009).
[CrossRef] [PubMed]

Feng, X.

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Finazzi, V.

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Foster, M. A.

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

Frampton, K. E.

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Frédérick, S.

C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

Fu, J.

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

Fu, L.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

Gaeta, A. L.

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

Gattass, R. R.

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

George, A. K.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

Glebov, L. B.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[CrossRef]

Glebova, L. N.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[CrossRef]

Gomes, A. S. L.

A. S. L. Gomes, C. B. de Araujo, B. J. Ainslie, and S. P. Craig-Ryan, “Amplified spontaneous emission in Tm3+-doped monomode optical fibers in the visible region,” Appl. Phys. Lett. 57(21), 2169–2171 (1990).
[CrossRef]

Grillet, C.

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

Gu, F.

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

Guo, X.

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

He, J.

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hellström, J. E.

S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006).
[CrossRef] [PubMed]

Herman, P. R.

K. P. Chen, P. R. Herman, and R. Tam, “Strong fiber Bragg grating fabrication by hybrid 157- and 248-nm laser exposure,” IEEE Photon. Technol. Lett. 14(2), 170–172 (2002).
[CrossRef]

Hô, N.

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

Hu, L.

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

Huang, K.

K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
[CrossRef] [PubMed]

Huang, L.

S. Shen, A. Jha, L. Huang, and P. Joshi, “980-nm diode-pumped Tm(3+)/Yb(3+)-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30(12), 1437–1439 (2005).
[CrossRef] [PubMed]

Huang, S.

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Infrared-to-ultraviolet up-conversion luminescence from AlF3:0.2%Tm3+, 10%Yb3+ particles prepared by pulsed laser ablation,” Solid State Commun. 125(7-8), 377–379 (2003).
[CrossRef]

Itoh, K.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
[CrossRef]

Jha, A.

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

S. Shen, A. Jha, L. Huang, and P. Joshi, “980-nm diode-pumped Tm(3+)/Yb(3+)-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30(12), 1437–1439 (2005).
[CrossRef] [PubMed]

Jiang, X.

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

Joshi, P.

S. Shen, A. Jha, L. Huang, and P. Joshi, “980-nm diode-pumped Tm(3+)/Yb(3+)-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30(12), 1437–1439 (2005).
[CrossRef] [PubMed]

Kai, G.

T. Sun, G. Kai, Z. Wang, S. Yuan, and X. Dong, “Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region,” Chin. Opt. Lett. 6(2), 93–95 (2008).
[CrossRef]

Kanamori, T.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29(8), 2325–2333 (1993).
[CrossRef]

Kar, A. K.

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

Kawai, S.

H. Masuda, S. Kawai, K. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photon. Technol. Lett. 10(4), 516–518 (1998).
[CrossRef]

Kazansky, P. G.

P. G. Kazansky, L. Dong, and P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[CrossRef] [PubMed]

Kito, C.

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 microm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009).
[CrossRef] [PubMed]

Knight, J. C.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

Krishnaswami, K.

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

Kubodera, K.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29(8), 2325–2333 (1993).
[CrossRef]

Kurosawa, K.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
[CrossRef]

Lamont, M. R. E.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

Lapointe, J.

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

Leong, J. Y. Y.

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Li, H.

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

Liao, M.

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 microm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009).
[CrossRef] [PubMed]

Liao, W.

L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, “Fabrication of submicron-diameter silica fibers using electric strip heater,” Opt. Express 14(12), 5055–5060 (2006).
[CrossRef] [PubMed]

Lipson, M.

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

Liu, H.

L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, “Fabrication of submicron-diameter silica fibers using electric strip heater,” Opt. Express 14(12), 5055–5060 (2006).
[CrossRef] [PubMed]

Loh, W. H.

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

Lou, J.

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Lousteau, J.

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

Lu, S.

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Infrared-to-ultraviolet up-conversion luminescence from AlF3:0.2%Tm3+, 10%Yb3+ particles prepared by pulsed laser ablation,” Solid State Commun. 125(7-8), 377–379 (2003).
[CrossRef]

Ma, Z.

Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33(21), 2565–2567 (2008).
[PubMed]

Maciel, G. S.

A. Patra, S. Saha, M. A. R. C. Alencar, N. Rakov, and G. S. Maciel, “Blue upconversion emission of Tm3+-Yb3+ in ZrO2 nancrystals: role of Yb3+ ions,” Chem. Phys. Lett. 407(4-6), 477–481 (2005).
[CrossRef]

MacPherson, W. N.

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

Mägi, E. C.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

Masuda, H.

H. Masuda, S. Kawai, K. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photon. Technol. Lett. 10(4), 516–518 (1998).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mejia, E. B.

D. V. Talavera and E. B. Mejia, “Blue-upconversion Tm3+-doped fiber laser pumped by a multiline Raman source,” J. Appl. Phys. 97(5), 053102 (2005).
[CrossRef]

Monat, C.

C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

Monro, T. M.

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Moore, R. C.

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Moss, D. J.

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

Myers, T. L.

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

Ng, L. N.

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glass for 1470 nm fiber amplifier,” J. Appl. Phys. 92(1), 112–117 (2002).
[CrossRef]

Oh, K.

J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibers,” Opt. Commun. 204, 111–118 (2002).

Ohishi, Y.

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 microm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009).
[CrossRef] [PubMed]

Omenetto, F. G.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

Ose, T.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
[CrossRef]

Pasiskevicius, V.

S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006).
[CrossRef] [PubMed]

Patra, A.

A. Patra, S. Saha, M. A. R. C. Alencar, N. Rakov, and G. S. Maciel, “Blue upconversion emission of Tm3+-Yb3+ in ZrO2 nancrystals: role of Yb3+ ions,” Chem. Phys. Lett. 407(4-6), 477–481 (2005).
[CrossRef]

Petropoulos, P.

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Phillips, M. C.

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

Poletti, F.

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

Poole, P. J.

C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

Price, J. H. V.

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Pujol, M. C.

S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006).
[CrossRef] [PubMed]

Qiao, H.

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

Qin, G.

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 microm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009).
[CrossRef] [PubMed]

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Infrared-to-ultraviolet up-conversion luminescence from AlF3:0.2%Tm3+, 10%Yb3+ particles prepared by pulsed laser ablation,” Solid State Commun. 125(7-8), 377–379 (2003).
[CrossRef]

Qin, W.

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Infrared-to-ultraviolet up-conversion luminescence from AlF3:0.2%Tm3+, 10%Yb3+ particles prepared by pulsed laser ablation,” Solid State Commun. 125(7-8), 377–379 (2003).
[CrossRef]

Qiu, J.

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

Rakov, N.

A. Patra, S. Saha, M. A. R. C. Alencar, N. Rakov, and G. S. Maciel, “Blue upconversion emission of Tm3+-Yb3+ in ZrO2 nancrystals: role of Yb3+ ions,” Chem. Phys. Lett. 407(4-6), 477–481 (2005).
[CrossRef]

Richardson, D. J.

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

Richardson, K. C.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[CrossRef]

Riley, B. J.

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

Roelens, M. A. F.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

Russell, P. St. J.

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005).
[CrossRef] [PubMed]

P. G. Kazansky, L. Dong, and P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[CrossRef] [PubMed]

Saha, S.

A. Patra, S. Saha, M. A. R. C. Alencar, N. Rakov, and G. S. Maciel, “Blue upconversion emission of Tm3+-Yb3+ in ZrO2 nancrystals: role of Yb3+ ions,” Chem. Phys. Lett. 407(4-6), 477–481 (2005).
[CrossRef]

Sahu, J. K.

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber laser with 188W free-running and > 100W tunable output power,” Opt. Express 13(13), 4916–4921 (2005).
[CrossRef] [PubMed]

Sessions, N. P.

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glass for 1470 nm fiber amplifier,” J. Appl. Phys. 92(1), 112–117 (2002).
[CrossRef]

Shen, D. Y.

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber laser with 188W free-running and > 100W tunable output power,” Opt. Express 13(13), 4916–4921 (2005).
[CrossRef] [PubMed]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shen, S.

S. Shen, A. Jha, L. Huang, and P. Joshi, “980-nm diode-pumped Tm(3+)/Yb(3+)-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30(12), 1437–1439 (2005).
[CrossRef] [PubMed]

Shen, Y.

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

Shi, L.

L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, “Fabrication of submicron-diameter silica fibers using electric strip heater,” Opt. Express 14(12), 5055–5060 (2006).
[CrossRef] [PubMed]

Smirnov, V. I.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[CrossRef]

Smith, C. L.

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

Smith, C. L. C.

C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

Stevenson, M.

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

Sun, T.

T. Sun, G. Kai, Z. Wang, S. Yuan, and X. Dong, “Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region,” Chin. Opt. Lett. 6(2), 93–95 (2008).
[CrossRef]

Suo, R.

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

Suzuki, K.

H. Masuda, S. Kawai, K. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photon. Technol. Lett. 10(4), 516–518 (1998).
[CrossRef]

Suzuki, T.

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 microm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009).
[CrossRef] [PubMed]

Svacha, G. T.

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

Talavera, D. V.

D. V. Talavera and E. B. Mejia, “Blue-upconversion Tm3+-doped fiber laser pumped by a multiline Raman source,” J. Appl. Phys. 97(5), 053102 (2005).
[CrossRef]

Tam, R.

K. P. Chen, P. R. Herman, and R. Tam, “Strong fiber Bragg grating fabrication by hybrid 157- and 248-nm laser exposure,” IEEE Photon. Technol. Lett. 14(2), 170–172 (2002).
[CrossRef]

Taylor, E. R.

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glass for 1470 nm fiber amplifier,” J. Appl. Phys. 92(1), 112–117 (2002).
[CrossRef]

Tong, L.

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
[CrossRef] [PubMed]

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tong, L. M.

Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33(21), 2565–2567 (2008).
[PubMed]

Torres-Peiro, S.

J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
[CrossRef]

Tsai, T. Y.

T. Y. Tsai and Y. C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express 17(3), 1429–1434 (2009).
[CrossRef] [PubMed]

Turner, A. C.

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

Wadsworth, W. J.

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005).
[CrossRef] [PubMed]

Wan, Q.

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

Wang, A.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

Wang, S.

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

Wang, Z.

T. Sun, G. Kai, Z. Wang, S. Yuan, and X. Dong, “Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region,” Chin. Opt. Lett. 6(2), 93–95 (2008).
[CrossRef]

Williams, R. L.

C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

Wolchover, N. A.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

Wu, C.

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Infrared-to-ultraviolet up-conversion luminescence from AlF3:0.2%Tm3+, 10%Yb3+ particles prepared by pulsed laser ablation,” Solid State Commun. 125(7-8), 377–379 (2003).
[CrossRef]

Xia, Y.

L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, “Fabrication of submicron-diameter silica fibers using electric strip heater,” Opt. Express 14(12), 5055–5060 (2006).
[CrossRef] [PubMed]

Yan, X.

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 microm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009).
[CrossRef] [PubMed]

Yang, Q.

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33(21), 2565–2567 (2008).
[PubMed]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

Yang, S.

K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
[CrossRef] [PubMed]

Ye, Z.

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, “Fabrication of submicron-diameter silica fibers using electric strip heater,” Opt. Express 14(12), 5055–5060 (2006).
[CrossRef] [PubMed]

Yeom, D. I.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

Yoshino, T.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
[CrossRef]

Yu, J. W.

J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibers,” Opt. Commun. 204, 111–118 (2002).

Yuan, S.

T. Sun, G. Kai, Z. Wang, S. Yuan, and X. Dong, “Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region,” Chin. Opt. Lett. 6(2), 93–95 (2008).
[CrossRef]

Zhang, J.

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Infrared-to-ultraviolet up-conversion luminescence from AlF3:0.2%Tm3+, 10%Yb3+ particles prepared by pulsed laser ablation,” Solid State Commun. 125(7-8), 377–379 (2003).
[CrossRef]

Zhang, L.

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

Zhao, D.

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Infrared-to-ultraviolet up-conversion luminescence from AlF3:0.2%Tm3+, 10%Yb3+ particles prepared by pulsed laser ablation,” Solid State Commun. 125(7-8), 377–379 (2003).
[CrossRef]

Zhou, K.

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

Appl. Opt.

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[CrossRef]

K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
[CrossRef] [PubMed]

S. Bjurshagen, J. E. Hellström, V. Pasiskevicius, M. C. Pujol, M. Aguiló, and F. Díaz, “Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates,” Appl. Opt. 45(19), 4715–4725 (2006).
[CrossRef] [PubMed]

Appl. Phys. B

J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010).
[CrossRef]

Appl. Phys. Lett.

A. S. L. Gomes, C. B. de Araujo, B. J. Ainslie, and S. P. Craig-Ryan, “Amplified spontaneous emission in Tm3+-doped monomode optical fibers in the visible region,” Appl. Phys. Lett. 57(21), 2169–2171 (1990).
[CrossRef]

Chem. Phys. Lett.

A. Patra, S. Saha, M. A. R. C. Alencar, N. Rakov, and G. S. Maciel, “Blue upconversion emission of Tm3+-Yb3+ in ZrO2 nancrystals: role of Yb3+ ions,” Chem. Phys. Lett. 407(4-6), 477–481 (2005).
[CrossRef]

Chin. Opt. Lett.

T. Sun, G. Kai, Z. Wang, S. Yuan, and X. Dong, “Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region,” Chin. Opt. Lett. 6(2), 93–95 (2008).
[CrossRef]

IEEE J. Quantum Electron.

M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29(8), 2325–2333 (1993).
[CrossRef]

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Masuda, S. Kawai, K. Suzuki, and K. Aida, “Ultrawide 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fiber amplifiers and distributed Raman amplifiers,” IEEE Photon. Technol. Lett. 10(4), 516–518 (1998).
[CrossRef]

K. P. Chen, P. R. Herman, and R. Tam, “Strong fiber Bragg grating fabrication by hybrid 157- and 248-nm laser exposure,” IEEE Photon. Technol. Lett. 14(2), 170–172 (2002).
[CrossRef]

J. Appl. Phys.

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glass for 1470 nm fiber amplifier,” J. Appl. Phys. 92(1), 112–117 (2002).
[CrossRef]

D. V. Talavera and E. B. Mejia, “Blue-upconversion Tm3+-doped fiber laser pumped by a multiline Raman source,” J. Appl. Phys. 97(5), 053102 (2005).
[CrossRef]

J. Lightwave Technol.

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-/spl mu/m pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

J. Non-Cryst. Solids

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009).
[CrossRef]

Laser Photon. Rev.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Commun.

J. W. Yu and K. Oh, “New in-line fiber band pass filters using high silica dispersive optical fibers,” Opt. Commun. 204, 111–118 (2002).

Opt. Express

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

T. Y. Tsai and Y. C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express 17(3), 1429–1434 (2009).
[CrossRef] [PubMed]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber laser with 188W free-running and > 100W tunable output power,” Opt. Express 13(13), 4916–4921 (2005).
[CrossRef] [PubMed]

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007).
[CrossRef] [PubMed]

R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, “Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers,” Opt. Express 17(9), 7540–7548 (2009).
[CrossRef] [PubMed]

L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, “Fabrication of submicron-diameter silica fibers using electric strip heater,” Opt. Express 14(12), 5055–5060 (2006).
[CrossRef] [PubMed]

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express 17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

Opt. Lett.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
[CrossRef] [PubMed]

S. Shen, A. Jha, L. Huang, and P. Joshi, “980-nm diode-pumped Tm(3+)/Yb(3+)-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30(12), 1437–1439 (2005).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 microm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009).
[CrossRef] [PubMed]

Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33(21), 2565–2567 (2008).
[PubMed]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[CrossRef] [PubMed]

P. G. Kazansky, L. Dong, and P. St. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[CrossRef] [PubMed]

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005).
[CrossRef] [PubMed]

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

Solid State Commun.

G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, “Infrared-to-ultraviolet up-conversion luminescence from AlF3:0.2%Tm3+, 10%Yb3+ particles prepared by pulsed laser ablation,” Solid State Commun. 125(7-8), 377–379 (2003).
[CrossRef]

Other

D. Michael, and C. Brian, “Amplification device utilizing thulium doped modified silicate optical fiber,” US patent 6924928 (2005).

S. Sudo, Optical Fiber Amplifiers: Materials, Devices, and Applications (Artech House, Boston, 1997), Chaps. 2 and 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The mode fields of a singlemode fiber in (a) are converted into higher order modes to cause huge optical losses but in (b) are smoothly transferred into the blue-violet, green, and red lights through Tm3+/Er3+ codoped tellurite wire using fiber tapers. The angled-cleaved bridging wire can avoid resonances in high index tellurite wire.

Fig. 2
Fig. 2

Fabrication procedures of a tellurite glass wire between two silica fiber tapers under a 50x CCD microscope. (a) The melting tellurite glass is initially clustered into a sphere at one end of fiber taper. (b) Another fiber taper is attached to the tellurite glass sphere. (c) The tellurite glass is heated and stretched. (d) The tellurite wire is keeping stretching to a smaller desired diameter (DW) and the nodes formed with tellurite glasses at the splicing junctions can thus be blurred. The inset picture with a pink frame between (a) and (b) is the 5-mm-thick tellurite glass.

Fig. 3
Fig. 3

Side view of (a) angled-cleaved fiber taper with a cleaved angle of 8.3° and (b) tellurite bridging wire with the thinnest tapered diameter (DW) of 5.3 μm under a 1000x CCD microscope.

Fig. 4
Fig. 4

(a) The bright upconversion red light from the bulk tellurite glass under a cw pump power of 5.6 Watt at 808 nm wavelength. The upconversion blue-violet lights from (b) the cross-sectional view and (c) the side view of a tellurite bulk glass when a cw pump power of 11 Watt Nd:YAG laser light at 1064 nm wavelength is focused by a 10x object lens into the tellurite bulk glass.

Fig. 5
Fig. 5

Energy levels diagram of Tm3+ ions.

Fig. 6
Fig. 6

Spectral responses of the tellurite wire with (a) DW, DT, and LW of (15.7 μm, 30 μm, 20.2 mm) and (13 μm, 30 μm, 21.3 mm), respectively, when bridging two perpendicular cleaved and (b) DW, DT, and LW of (34.2 μm, 70 μm, 17.2 mm), (25.4 μm, 50 μm, 19.5 mm) and (17.1 μm, 30 μm, 21 mm), respectively, when bridging the two angled-cleaved silica fiber tapers. (RES: 1nm).

Fig. 7
Fig. 7

The red upconversion emissions of the Tm3+/Er3+ codoped photonic microwire and bulk glass under a 975 nm pump laser light.

Fig. 8
Fig. 8

(a) The blue-violet upconversion fluorescence along the Tm3+/Er3+ codoped tellurite bridging microwire indicating the transition over 1D23F4 (4-photon upconversion) and 1G43H6 (3-photon upconversion) manifolds when a cw 270 mW 1064 nm Nd:YAG laser light is launched into the 21-mm-long tellurite wire. (b) The measured spectra of upconversion emissions for the photonic microwire and bulk glass.

Fig. 9
Fig. 9

Tensile strength test of the photonic wire with the DW and LW of 17 µm and 16 mm, respectively. The photonic wire can be endurable until a counterpoise with the weight of 3.72 g is applied.

Metrics