Abstract

Previously, we reported a digital technique for formation of real, non-distorted, orthoscopic integral images by direct pickup. However the technique was constrained to the case of symmetric image capture and display systems. Here, we report a more general algorithm which allows the pseudoscopic to orthoscopic transformation with full control over the display parameters so that one can generate a set of synthetic elemental images that suits the characteristics of the Integral-Imaging monitor and permits control over the depth and size of the reconstructed 3D scene.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
  2. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
    [CrossRef] [PubMed]
  3. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
    [CrossRef] [PubMed]
  4. B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31(8), 1106–1108 (2006).
    [CrossRef] [PubMed]
  5. B. Heigl, R. Koch, M. Pollefeys, J. Denzler, and L. Van Gool, “Plenoptic Modeling and Rendering from Image sequences taken by hand-held Camera,” Proc. DAGM, 94–101 (1999).
  6. S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13(23), 9310–9330 (2005).
    [CrossRef] [PubMed]
  7. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
    [CrossRef] [PubMed]
  8. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
    [CrossRef] [PubMed]
  9. D.-H. Shin, C.-W. Tan, B.-G. Lee, J.-J. Lee, and E.-S. Kim, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47(35), 6656–6665 (2008).
    [CrossRef] [PubMed]
  10. M. Zhang, Y. Piao, and E.-S. Kim, “Occlusion-removed scheme using depth-reversed method in computational integral imaging,” Appl. Opt. 49(14), 2571–2580 (2010).
    [CrossRef]
  11. T.-Ch. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Korea 13(1), 139–145 (2009).
    [CrossRef]
  12. D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging,” Opt. Lasers Eng. 47(11), 1189–1194 (2009).
    [CrossRef]
  13. J. Arai, H. Kawai, M. Kawakita, and F. Okano, “Depth-control method for integral imaging,” Opt. Lett. 33(3), 279–281 (2008).
    [CrossRef] [PubMed]
  14. D.-Ch. Hwang, J.-S. Park, S.-Ch. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
    [CrossRef] [PubMed]
  15. H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral imaging monitors,” J. Display Technol. 6(10), 404–411 (2010).
    [CrossRef]
  16. J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27(13), 1144–1146 (2002).
    [CrossRef]
  17. J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
    [CrossRef] [PubMed]

2010

M. Zhang, Y. Piao, and E.-S. Kim, “Occlusion-removed scheme using depth-reversed method in computational integral imaging,” Appl. Opt. 49(14), 2571–2580 (2010).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral imaging monitors,” J. Display Technol. 6(10), 404–411 (2010).
[CrossRef]

2009

T.-Ch. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Korea 13(1), 139–145 (2009).
[CrossRef]

D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging,” Opt. Lasers Eng. 47(11), 1189–1194 (2009).
[CrossRef]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
[CrossRef] [PubMed]

2008

D.-H. Shin, C.-W. Tan, B.-G. Lee, J.-J. Lee, and E.-S. Kim, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47(35), 6656–6665 (2008).
[CrossRef] [PubMed]

J. Arai, H. Kawai, M. Kawakita, and F. Okano, “Depth-control method for integral imaging,” Opt. Lett. 33(3), 279–281 (2008).
[CrossRef] [PubMed]

2006

D.-Ch. Hwang, J.-S. Park, S.-Ch. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[CrossRef] [PubMed]

J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
[CrossRef] [PubMed]

B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31(8), 1106–1108 (2006).
[CrossRef] [PubMed]

2005

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13(23), 9310–9330 (2005).
[CrossRef] [PubMed]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
[CrossRef] [PubMed]

2004

S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
[CrossRef] [PubMed]

2002

J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27(13), 1144–1146 (2002).
[CrossRef]

1997

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
[CrossRef] [PubMed]

1908

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).

Arai, J.

J. Arai, H. Kawai, M. Kawakita, and F. Okano, “Depth-control method for integral imaging,” Opt. Lett. 33(3), 279–281 (2008).
[CrossRef] [PubMed]

J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
[CrossRef] [PubMed]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
[CrossRef] [PubMed]

Hong, K.

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
[CrossRef] [PubMed]

Hong, S.-H.

B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31(8), 1106–1108 (2006).
[CrossRef] [PubMed]

S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
[CrossRef] [PubMed]

Hoshino, H.

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
[CrossRef] [PubMed]

Hwang, D.-Ch.

D.-Ch. Hwang, J.-S. Park, S.-Ch. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[CrossRef] [PubMed]

Jang, J. S.

J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27(13), 1144–1146 (2002).
[CrossRef]

Jang, J.-S.

S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
[CrossRef] [PubMed]

Javidi, B.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral imaging monitors,” J. Display Technol. 6(10), 404–411 (2010).
[CrossRef]

B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31(8), 1106–1108 (2006).
[CrossRef] [PubMed]

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13(23), 9310–9330 (2005).
[CrossRef] [PubMed]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
[CrossRef] [PubMed]

S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
[CrossRef] [PubMed]

J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27(13), 1144–1146 (2002).
[CrossRef]

Kawai, H.

J. Arai, H. Kawai, M. Kawakita, and F. Okano, “Depth-control method for integral imaging,” Opt. Lett. 33(3), 279–281 (2008).
[CrossRef] [PubMed]

J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
[CrossRef] [PubMed]

Kawakita, M.

J. Arai, H. Kawai, M. Kawakita, and F. Okano, “Depth-control method for integral imaging,” Opt. Lett. 33(3), 279–281 (2008).
[CrossRef] [PubMed]

Kim, E.-S.

M. Zhang, Y. Piao, and E.-S. Kim, “Occlusion-removed scheme using depth-reversed method in computational integral imaging,” Appl. Opt. 49(14), 2571–2580 (2010).
[CrossRef]

D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging,” Opt. Lasers Eng. 47(11), 1189–1194 (2009).
[CrossRef]

D.-H. Shin, C.-W. Tan, B.-G. Lee, J.-J. Lee, and E.-S. Kim, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47(35), 6656–6665 (2008).
[CrossRef] [PubMed]

D.-Ch. Hwang, J.-S. Park, S.-Ch. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[CrossRef] [PubMed]

Kim, S.-Ch.

D.-Ch. Hwang, J.-S. Park, S.-Ch. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[CrossRef] [PubMed]

Lee, B.

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
[CrossRef] [PubMed]

Lee, B.-G.

T.-Ch. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Korea 13(1), 139–145 (2009).
[CrossRef]

D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging,” Opt. Lasers Eng. 47(11), 1189–1194 (2009).
[CrossRef]

D.-H. Shin, C.-W. Tan, B.-G. Lee, J.-J. Lee, and E.-S. Kim, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47(35), 6656–6665 (2008).
[CrossRef] [PubMed]

Lee, J.-J.

D.-H. Shin, C.-W. Tan, B.-G. Lee, J.-J. Lee, and E.-S. Kim, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47(35), 6656–6665 (2008).
[CrossRef] [PubMed]

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).

Martínez-Corral, M.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral imaging monitors,” J. Display Technol. 6(10), 404–411 (2010).
[CrossRef]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
[CrossRef] [PubMed]

Martínez-Cuenca, R.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral imaging monitors,” J. Display Technol. 6(10), 404–411 (2010).
[CrossRef]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
[CrossRef] [PubMed]

Molina-Martín, A.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral imaging monitors,” J. Display Technol. 6(10), 404–411 (2010).
[CrossRef]

Navarro, H.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral imaging monitors,” J. Display Technol. 6(10), 404–411 (2010).
[CrossRef]

Okano, F.

J. Arai, H. Kawai, M. Kawakita, and F. Okano, “Depth-control method for integral imaging,” Opt. Lett. 33(3), 279–281 (2008).
[CrossRef] [PubMed]

J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
[CrossRef] [PubMed]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
[CrossRef] [PubMed]

Park, J.-H.

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
[CrossRef] [PubMed]

Park, J.-S.

D.-Ch. Hwang, J.-S. Park, S.-Ch. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[CrossRef] [PubMed]

Piao, Y.

M. Zhang, Y. Piao, and E.-S. Kim, “Occlusion-removed scheme using depth-reversed method in computational integral imaging,” Appl. Opt. 49(14), 2571–2580 (2010).
[CrossRef]

Ponce-Díaz, R.

B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31(8), 1106–1108 (2006).
[CrossRef] [PubMed]

Saavedra, G.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral imaging monitors,” J. Display Technol. 6(10), 404–411 (2010).
[CrossRef]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
[CrossRef] [PubMed]

Shin, D.-H.

D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging,” Opt. Lasers Eng. 47(11), 1189–1194 (2009).
[CrossRef]

T.-Ch. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Korea 13(1), 139–145 (2009).
[CrossRef]

D.-H. Shin, C.-W. Tan, B.-G. Lee, J.-J. Lee, and E.-S. Kim, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47(35), 6656–6665 (2008).
[CrossRef] [PubMed]

D.-Ch. Hwang, J.-S. Park, S.-Ch. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[CrossRef] [PubMed]

Tan, C.-W.

D.-H. Shin, C.-W. Tan, B.-G. Lee, J.-J. Lee, and E.-S. Kim, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47(35), 6656–6665 (2008).
[CrossRef] [PubMed]

Watson, E.

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13(23), 9310–9330 (2005).
[CrossRef] [PubMed]

Wei, T.-Ch.

T.-Ch. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Korea 13(1), 139–145 (2009).
[CrossRef]

Yeom, S.

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13(23), 9310–9330 (2005).
[CrossRef] [PubMed]

Yuyama, I.

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
[CrossRef] [PubMed]

Zhang, M.

M. Zhang, Y. Piao, and E.-S. Kim, “Occlusion-removed scheme using depth-reversed method in computational integral imaging,” Appl. Opt. 49(14), 2571–2580 (2010).
[CrossRef]

Appl. Opt.

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
[CrossRef] [PubMed]

D.-H. Shin, C.-W. Tan, B.-G. Lee, J.-J. Lee, and E.-S. Kim, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47(35), 6656–6665 (2008).
[CrossRef] [PubMed]

M. Zhang, Y. Piao, and E.-S. Kim, “Occlusion-removed scheme using depth-reversed method in computational integral imaging,” Appl. Opt. 49(14), 2571–2580 (2010).
[CrossRef]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
[CrossRef] [PubMed]

D.-Ch. Hwang, J.-S. Park, S.-Ch. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45(19), 4631–4637 (2006).
[CrossRef] [PubMed]

J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
[CrossRef] [PubMed]

J. Display Technol.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral imaging monitors,” J. Display Technol. 6(10), 404–411 (2010).
[CrossRef]

J. Opt. Soc. Korea

T.-Ch. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Korea 13(1), 139–145 (2009).
[CrossRef]

J. Phys.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).

Opt. Express

S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
[CrossRef] [PubMed]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
[CrossRef] [PubMed]

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13(23), 9310–9330 (2005).
[CrossRef] [PubMed]

Opt. Lasers Eng.

D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Modified smart pixel mapping method for displaying orthoscopic 3D images in integral imaging,” Opt. Lasers Eng. 47(11), 1189–1194 (2009).
[CrossRef]

Opt. Lett.

J. Arai, H. Kawai, M. Kawakita, and F. Okano, “Depth-control method for integral imaging,” Opt. Lett. 33(3), 279–281 (2008).
[CrossRef] [PubMed]

B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31(8), 1106–1108 (2006).
[CrossRef] [PubMed]

J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27(13), 1144–1146 (2002).
[CrossRef]

Other

B. Heigl, R. Koch, M. Pollefeys, J. Denzler, and L. Van Gool, “Plenoptic Modeling and Rendering from Image sequences taken by hand-held Camera,” Proc. DAGM, 94–101 (1999).

Supplementary Material (4)

» Media 1: AVI (581 KB)     
» Media 2: AVI (389 KB)     
» Media 3: AVI (283 KB)     
» Media 4: AVI (592 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Calculation of the synthetic integral image. The pixel of the synthetic integral image (dotted blue line) stores the same value as the pixel of the captured integral image.

Fig. 2
Fig. 2

Scheme for the calculation of the Okano’s synthetic integral image.

Fig. 3
Fig. 3

Scheme of the experimental set up for the acquisition of the set of elemental images of a 3D scene.

Fig. 4
Fig. 4

Subset of the elemental images obtained experimentally. These elemental images are the input for the SPOC algorithm.

Fig. 5
Fig. 5

(a) Collection of 151 × 151 SEIs obtained after the application of the SPOC algorithm; (b) enlarged view of central SEIs.

Fig. 6
Fig. 6

Two Perspectives of the 3D reconstructed scene, as seen by an observer placed at a distance L = 700 m m . In the video (Media 1) we show the movie built with the frames obtained with the visualization algorithm.

Fig. 7
Fig. 7

Experimental setup for the observation of the InI monitor. After displacing horizontally the camera in steps of 10 mm we recorded 20 different perspectives of the displayed 3D scene.

Fig. 8
Fig. 8

Two perspectives of the 3D scene displayed in the real experiment. In the video (Media 2) we show the movie built with the perspectives photographed with the digital camera.

Fig. 9
Fig. 9

(a) Collection of hexagonal elemental images obtained after the application of the SPOC algorithm; (b) enlarged view of some central SEIs.

Fig. 10
Fig. 10

Two Perspectives of the reconstructed scene, as seen by an observer placed at a distance L = 700 m m . In the video (Media 3) we show the movie built with the frames obtained with the visualization algorithm.

Fig. 11
Fig. 11

Experimental setup for the observation of the hexagonal InI monitor. After displacing horizontally the camera in steps of 10 mm, we recorded 35 different perspectives of the displayed 3D scene.

Fig. 12
Fig. 12

Two perspectives of the 3D scene displayed in the real hexagonal experiment. In the video (Media 4) we show the movie built with the perspectives photographed with the digital camera.

Tables (1)

Tables Icon

Table 1 List of acronyms

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ o = ( 1 + d S g S ) j p S d S g S x S ,
i jm = R o u n d [ D p D g S ( j p S + m p S n S ) + g S + D p D g S j p S ] = R o u n d [ p S p D j p S p D D g S m n S ] ,
l jm = R o u n d [ g D D d S n D i jm + g D g S p S p D n D D d S ( d S m n S j p S ) ]
I jm S = I il D
l jm = R o u n d [ g D d S n D i m + n D g S d S j ] = m
l jm = m

Metrics