Abstract

A hybrid one-dimensional photonic crystal waveguide—a slab waveguide surrounded by one-dimensional photonic crystal with omnidirectional reflection bands, is presented; the transmission/reflection characteristics of the hybrid waveguides with a semi-cylinder defect are investigated by numerical simulation. Calculated results indicate that, as long as the semi-cylinder radius is appropriately adjusted, the high reflectance of 96.7%, nearly zero transmittance and low loss of 3% can be observed. The hybrid waveguide with a semi-cylinder defect can be used as a waveguide reflector. The simple and compact waveguide reflector is expected to be applied to highly dense photonic integrated circuits after further research.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
    [CrossRef]
  2. S. G. Johnson, M. L. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
    [CrossRef]
  3. M. L. Povinelli, S. G. Johnson, E Lidorikis, J. D Joannopoulos, and M Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84(18), 3639 (2004).
    [CrossRef]
  4. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
    [CrossRef]
  5. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
    [CrossRef] [PubMed]
  6. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding Optical Light in Air Using an All-Dielectric Structure,” J. Lightwave Technol. 17(11), 2039–2042 (1999).
    [CrossRef]
  7. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
    [CrossRef] [PubMed]
  8. B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett . 93, 181107 1–3 (2008).
  9. B. Chen, T. Tang, and H. Chen, “Study on a compact flexible photonic crystal waveguide and its bends,” Opt. Express 17(7), 5033–5038 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-7-5033 .
    [CrossRef] [PubMed]
  10. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-8-3-173 .
    [CrossRef] [PubMed]
  11. A. Taflove, and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2nd ed. (Artech House, Boston, 2000).

2009

B. Chen, T. Tang, and H. Chen, “Study on a compact flexible photonic crystal waveguide and its bends,” Opt. Express 17(7), 5033–5038 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-7-5033 .
[CrossRef] [PubMed]

2008

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett . 93, 181107 1–3 (2008).

2005

S. G. Johnson, M. L. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[CrossRef]

2004

M. L. Povinelli, S. G. Johnson, E Lidorikis, J. D Joannopoulos, and M Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84(18), 3639 (2004).
[CrossRef]

2002

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

2001

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-8-3-173 .
[CrossRef] [PubMed]

2000

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
[CrossRef]

1999

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding Optical Light in Air Using an All-Dielectric Structure,” J. Lightwave Technol. 17(11), 2039–2042 (1999).
[CrossRef]

1998

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Chen, B.

B. Chen, T. Tang, and H. Chen, “Study on a compact flexible photonic crystal waveguide and its bends,” Opt. Express 17(7), 5033–5038 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-7-5033 .
[CrossRef] [PubMed]

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett . 93, 181107 1–3 (2008).

Chen, C.

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding Optical Light in Air Using an All-Dielectric Structure,” J. Lightwave Technol. 17(11), 2039–2042 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Chen, H.

B. Chen, T. Tang, and H. Chen, “Study on a compact flexible photonic crystal waveguide and its bends,” Opt. Express 17(7), 5033–5038 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-7-5033 .
[CrossRef] [PubMed]

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett . 93, 181107 1–3 (2008).

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
[CrossRef]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding Optical Light in Air Using an All-Dielectric Structure,” J. Lightwave Technol. 17(11), 2039–2042 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
[CrossRef]

Fink, Y.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding Optical Light in Air Using an All-Dielectric Structure,” J. Lightwave Technol. 17(11), 2039–2042 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
[CrossRef]

Hart, S. D.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

Jacobs, S.

S. G. Johnson, M. L. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[CrossRef]

Joannopoulos, J. D

M. L. Povinelli, S. G. Johnson, E Lidorikis, J. D Joannopoulos, and M Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84(18), 3639 (2004).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, M. L. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[CrossRef]

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-8-3-173 .
[CrossRef] [PubMed]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
[CrossRef]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding Optical Light in Air Using an All-Dielectric Structure,” J. Lightwave Technol. 17(11), 2039–2042 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
[CrossRef]

Johnson, S. G.

S. G. Johnson, M. L. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[CrossRef]

M. L. Povinelli, S. G. Johnson, E Lidorikis, J. D Joannopoulos, and M Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84(18), 3639 (2004).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-8-3-173 .
[CrossRef] [PubMed]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
[CrossRef]

Karalis, A.

S. G. Johnson, M. L. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[CrossRef]

Lidorikis, E

M. L. Povinelli, S. G. Johnson, E Lidorikis, J. D Joannopoulos, and M Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84(18), 3639 (2004).
[CrossRef]

Liu, Z.

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett . 93, 181107 1–3 (2008).

Maskaly, G. R.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Povinelli, M. L.

S. G. Johnson, M. L. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[CrossRef]

M. L. Povinelli, S. G. Johnson, E Lidorikis, J. D Joannopoulos, and M Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84(18), 3639 (2004).
[CrossRef]

Prideaux, P. H.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

Ripin, D. J.

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding Optical Light in Air Using an All-Dielectric Structure,” J. Lightwave Technol. 17(11), 2039–2042 (1999).
[CrossRef]

Soljacic, M.

S. G. Johnson, M. L. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[CrossRef]

Soljacic,, M

M. L. Povinelli, S. G. Johnson, E Lidorikis, J. D Joannopoulos, and M Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84(18), 3639 (2004).
[CrossRef]

Tang, T.

B. Chen, T. Tang, and H. Chen, “Study on a compact flexible photonic crystal waveguide and its bends,” Opt. Express 17(7), 5033–5038 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-7-5033 .
[CrossRef] [PubMed]

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett . 93, 181107 1–3 (2008).

Temelkuran, B.

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

Thomas, E. L.

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding Optical Light in Air Using an All-Dielectric Structure,” J. Lightwave Technol. 17(11), 2039–2042 (1999).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
[CrossRef]

Wang, Z.

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett . 93, 181107 1–3 (2008).

Winn, J. N.

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Appl. Phys. B

S. G. Johnson, M. L. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005).
[CrossRef]

Appl. Phys. Lett

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett . 93, 181107 1–3 (2008).

Appl. Phys. Lett.

M. L. Povinelli, S. G. Johnson, E Lidorikis, J. D Joannopoulos, and M Soljačić, “Effect of a photonic band gap on scattering from waveguide disorder,” Appl. Phys. Lett. 84(18), 3639 (2004).
[CrossRef]

J. Lightwave Technol.

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding Optical Light in Air Using an All-Dielectric Structure,” J. Lightwave Technol. 17(11), 2039–2042 (1999).
[CrossRef]

Opt. Express

B. Chen, T. Tang, and H. Chen, “Study on a compact flexible photonic crystal waveguide and its bends,” Opt. Express 17(7), 5033–5038 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-7-5033 .
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-8-3-173 .
[CrossRef] [PubMed]

Opt. Lett.

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
[CrossRef]

Phys. Rev. B

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000).
[CrossRef]

Science

S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef] [PubMed]

Other

A. Taflove, and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2nd ed. (Artech House, Boston, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a). A schematic drawing of symmetric slab waveguides; the index and width of waveguide core is n2 and h, respectively; the index of clad is n0. (b) A schematic drawing of hybrid one-dimensional photonic crystal waveguide—a slab waveguide surrounded by one-dimensional photonic crystals; One-dimensional photonic crystal consists of alternating layers of material with different index/width: n1/h1 and n2/h2, where is h1 + h2 = a, and a is lattice constant. h0 is the total width of defect channel.

Fig. 2
Fig. 2

The dispersion curves of TE0 mode for slab waveguide (shown in Fig. 1(a)) and hybrid one-dimensional photonic crystal waveguide (shown in Fig. 1(b)) with h = 0.15a or 0.35a. Here, take n0 = 1 (air), n1 = 1.6 (polystyrene), n2 = 4.6 (tellurium), h0 = 1.75a, h1 = 0.75a and h2 = 0.25a.

Fig. 3
Fig. 3

The comparison of Ey field distribution between slab waveguide and hybrid one-dimensional photonic crystal waveguide with h = 0.35a; (a), (b), (c) and (d) are corresponding to A, B,C and D points in Fig. 2, respectively.

Fig. 4
Fig. 4

A semi-cylinder defect with index n2 and radius r is introduced into a sidewall of in slab waveguide core (a) and hybrid one-dimensional photonic crystal waveguide core (b), respectively.

Fig. 5
Fig. 5

For the slab waveguide with a semi-cylinder defect shown in Fig. 4(a), the influence of defect radius r on transmission (T), reflection (Г) and loss spectra.

Fig. 6
Fig. 6

For the hybrid one-dimensional photonic crystal waveguide with a semi-cylinder defect shown in Fig. 4(b), the influence of defect radius r on transmission (T), reflection (Г) and loss spectra.

Fig. 7
Fig. 7

The relation curve between maximum reflectance and defect radius r, for the defect waveguide shown in Fig. 4(b)

Fig. 8
Fig. 8

A schematic drawing of the waveguide reflector based on a semi-cylinder defect in hybrid one-dimensional photonic crystal waveguide; (b) the distributions of Ey field component in the waveguide reflector with r = 0.21a at 0.2735 [c/a].

Metrics