Abstract

We experimentally demonstrate solid-core photonic crystal fibers that guide via the inhibited coupling mechanism. We measure an overall transmission window of more than an octave, as well as an uninterrupted width of almost one octave. The fiber is fabricated in polymer, with high-index ring-shaped inclusions. This type of fiber was conceived based on a simple model which shows that the cutoffs of the modes of a thin ring cluster around the cutoffs of planar waveguide modes. The model shows that such ring based fibers are closely related to kagome and square lattice hollow core fibers, and have transmission bandwidths that could in principle reach 1.6 octaves. Measured transmission properties are in good agreement with rigorous modelling.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [Crossref]
  2. S. A. Cerqueira, C. M..B. Cordeiro, F. Biancalana, P..J. Roberts, H..E. Hernandez-Figueroa, and C. H. B. Cruz, “Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber,” Opt. Lett. 33, 2080–2082 (2008)
    [Crossref]
  3. V. Pureur and J. M. Dudley, “Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers,” Opt. Lett. 35, 2813–2815 (2010)
    [Crossref] [PubMed]
  4. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [Crossref]
  5. N. M. Litchinitser, S. Dunn, B. Usner, B. J. Eggleton, T. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
    [Crossref] [PubMed]
  6. T. D. Hedley, D. M. Bird, F. Benabid, J. C. Knight, P. St, and J. Russell, “Modelling of a novel hollow-core photonic crystal fiber,” CLEO 2003, paper QTuL4.
  7. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
    [Crossref] [PubMed]
  8. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multioctave optical-frequency combs,” Science 318, 1118–1121 (2007).
    [Crossref] [PubMed]
  9. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, P. St, and J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007).
    [Crossref] [PubMed]
  10. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008).
    [Crossref] [PubMed]
  11. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in a hollow-core photonic crystal fiber cladding,” Opt. Express 15, 325–338 (2007).
    [Crossref] [PubMed]
  12. F. Poletti, “Hollow core fiber with an octave spanning bandgap,” Opt. Lett. 35, 2837–2839 (2010).
    [Crossref] [PubMed]
  13. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, P. St, and J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13, 309–314 (2005).
    [Crossref] [PubMed]
  14. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, P. St, and J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13, 2503–2511 (2005).
    [Crossref] [PubMed]
  15. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, “An improved photonic bandgap fiber based on an array of rings,” Opt. Express 14, 6291–6296 (2006).
    [Crossref] [PubMed]
  16. A. Wang, G. J. Pearce, F. Luan, D. M. Bird, T. A. Birks, and J. C. Knight, “All solid photonic bandgap fiber based on an array of oriented rectangular high index rods,” Opt. Express 14, 10844–10850 (2006).
    [Crossref] [PubMed]
  17. F. Benabid, J. C. Knight, G. Antonopoulos, P. St, and J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref] [PubMed]
  18. Y. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low-loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” CLEO 2010, postdeadline paper CPDB4.
  19. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005).
    [Crossref] [PubMed]
  20. V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2003).
    [Crossref]
  21. A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol. 27, 1571–1579 (2009).
    [Crossref]
  22. J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Optics A-Pure Appl. Opt.6, 798–804 (2004).
    [Crossref]
  23. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14, 9483–9490 (2006).
    [Crossref] [PubMed]
  24. B. T. Kuhlmey, S. Coen, and S. Mahmoodian, “Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis,” Opt. Express 17, 16306–16321 (2009).
    [Crossref] [PubMed]
  25. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, “Multipole analysis of photonic crystal fibers with coated inclusions,” Opt. Express 14, 10851–10864 (2006).
    [Crossref] [PubMed]
  26. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
    [Crossref]
  27. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
    [Crossref]
  28. T. Grujic, B. T. Kuhlmey, C. M. de Sterke, and C. G. Poulton, “Modeling of photonic crystal fiber based on layered inclusions,” J. Opt. Soc. Am. B 26, 1852–1861 (2009).
    [Crossref]
  29. P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides-I: Summary of results,” IEEE Trans. Microwave Theory Tech.23, 421–429 (1975).
    [Crossref]
  30. P. Steinvurzel, C. M. de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14, 8797–8811 (2006).
    [Crossref] [PubMed]
  31. A. Fuerbach, P. Steinvurzel, J. A. Bolger, and B. J. Eggleton, “Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers,” Opt. Express 13, 2977–2987 (2005).
    [Crossref] [PubMed]

2010 (2)

2009 (3)

2008 (2)

2007 (4)

2006 (6)

2005 (4)

2003 (2)

V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2003).
[Crossref]

N. M. Litchinitser, S. Dunn, B. Usner, B. J. Eggleton, T. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
[Crossref] [PubMed]

2002 (4)

Abeeluck, A. K.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, P. St, and J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Argyros, A.

Benabid, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multioctave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in a hollow-core photonic crystal fiber cladding,” Opt. Express 15, 325–338 (2007).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, P. St, and J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

T. D. Hedley, D. M. Bird, F. Benabid, J. C. Knight, P. St, and J. Russell, “Modelling of a novel hollow-core photonic crystal fiber,” CLEO 2003, paper QTuL4.

Y. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low-loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” CLEO 2010, postdeadline paper CPDB4.

Biancalana, F.

Bird, D. M.

Birks, T. A.

Bolger, J. A.

Botten, L. C.

Burger, S.

Burnett, M. T.

Cerqueira, S. A.

Citrin, D. S.

Coen, S.

Cordeiro, C. M. B.

Cordeiro, C. M..B.

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in a hollow-core photonic crystal fiber cladding,” Opt. Express 15, 325–338 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multioctave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

Y. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low-loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” CLEO 2010, postdeadline paper CPDB4.

Cruz, C. H. B.

de Sterke, C. M.

Docherty, A.

Dudley, J. M.

Dunn, S.

Eggleton, B. J.

Fuerbach, A.

George, A. K.

Grujic, T.

Headley, C.

Hedley, T. D.

T. D. Hedley, D. M. Bird, F. Benabid, J. C. Knight, P. St, and J. Russell, “Modelling of a novel hollow-core photonic crystal fiber,” CLEO 2003, paper QTuL4.

Hernandez-Figueroa, H..E.

Kanayama, T.

V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2003).
[Crossref]

Knight, J. C.

J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, “An improved photonic bandgap fiber based on an array of rings,” Opt. Express 14, 6291–6296 (2006).
[Crossref] [PubMed]

A. Wang, G. J. Pearce, F. Luan, D. M. Bird, T. A. Birks, and J. C. Knight, “All solid photonic bandgap fiber based on an array of oriented rectangular high index rods,” Opt. Express 14, 10844–10850 (2006).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, P. St, and J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

T. D. Hedley, D. M. Bird, F. Benabid, J. C. Knight, P. St, and J. Russell, “Modelling of a novel hollow-core photonic crystal fiber,” CLEO 2003, paper QTuL4.

Kuhlmey, B. T.

Kurt, H.

Laegsgaard, J.

J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Optics A-Pure Appl. Opt.6, 798–804 (2004).
[Crossref]

Leon-Saval, S. G.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multioctave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

Litchinitser, N. M.

Luan, F.

Mahmoodian, S.

Maier, S. A.

Maystre, D.

McIsaac, P. R.

P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides-I: Summary of results,” IEEE Trans. Microwave Theory Tech.23, 421–429 (1975).
[Crossref]

McPhedran, R. C.

Moroz, A.

V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2003).
[Crossref]

Pathmanandavel, K.

Pearce, G. J.

Pla, J.

Poborchii, V.

V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2003).
[Crossref]

Poletti, F.

Poulton, C. G.

Pureur, V.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multioctave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

Renversez, G.

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multioctave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in a hollow-core photonic crystal fiber cladding,” Opt. Express 15, 325–338 (2007).
[Crossref] [PubMed]

Y. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low-loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” CLEO 2010, postdeadline paper CPDB4.

Roberts, P..J.

Russell, J.

Russell, P. St. J.

St, P.

Steel, M. J.

Steinvurzel, P.

Stone, J. M.

Tada, T.

V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2003).
[Crossref]

Usner, B.

Wang, A.

Wang, Y. Y.

Y. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low-loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” CLEO 2010, postdeadline paper CPDB4.

White, T.

White, T. P.

Wiederhecker, G. S.

Appl. Phys. Lett. (1)

V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2003).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (3)

Opt. Express (15)

T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14, 9483–9490 (2006).
[Crossref] [PubMed]

B. T. Kuhlmey, S. Coen, and S. Mahmoodian, “Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis,” Opt. Express 17, 16306–16321 (2009).
[Crossref] [PubMed]

B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, “Multipole analysis of photonic crystal fibers with coated inclusions,” Opt. Express 14, 10851–10864 (2006).
[Crossref] [PubMed]

P. Steinvurzel, C. M. de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14, 8797–8811 (2006).
[Crossref] [PubMed]

A. Fuerbach, P. Steinvurzel, J. A. Bolger, and B. J. Eggleton, “Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers,” Opt. Express 13, 2977–2987 (2005).
[Crossref] [PubMed]

H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005).
[Crossref] [PubMed]

N. M. Litchinitser, S. Dunn, B. Usner, B. J. Eggleton, T. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
[Crossref] [PubMed]

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
[Crossref] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, P. St, and J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007).
[Crossref] [PubMed]

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in a hollow-core photonic crystal fiber cladding,” Opt. Express 15, 325–338 (2007).
[Crossref] [PubMed]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, P. St, and J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13, 309–314 (2005).
[Crossref] [PubMed]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, P. St, and J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13, 2503–2511 (2005).
[Crossref] [PubMed]

J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, “An improved photonic bandgap fiber based on an array of rings,” Opt. Express 14, 6291–6296 (2006).
[Crossref] [PubMed]

A. Wang, G. J. Pearce, F. Luan, D. M. Bird, T. A. Birks, and J. C. Knight, “All solid photonic bandgap fiber based on an array of oriented rectangular high index rods,” Opt. Express 14, 10844–10850 (2006).
[Crossref] [PubMed]

Opt. Lett. (4)

Science (2)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multioctave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, P. St, and J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Other (4)

Y. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low-loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” CLEO 2010, postdeadline paper CPDB4.

T. D. Hedley, D. M. Bird, F. Benabid, J. C. Knight, P. St, and J. Russell, “Modelling of a novel hollow-core photonic crystal fiber,” CLEO 2003, paper QTuL4.

J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Optics A-Pure Appl. Opt.6, 798–804 (2004).
[Crossref]

P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides-I: Summary of results,” IEEE Trans. Microwave Theory Tech.23, 421–429 (1975).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the fiber, each color represents a homogeneous material. (b) Illustration of the analogy between the modes of a thin ring and those of an asymmetric planar waveguide.

Fig. 2
Fig. 2

(a) Cutoff a/b ratios of a ring-shaped inclusion as a function of normalized frequency. The m = 0 modes are indicated in black, while those for m = 1,···,6 are increasingly lighter grey. The modes of a planar waveguide are indicated in red. The dots indicate the cutoffs of modes with m = 7, ···, 20 at a/b = 0.9. (b) Cutoff a/b ratios of a ring-shaped inclusion as a function of normalized wavelength, for modes with m = 0 to m = 3 of a single ring. The labels indicate the corresponding step-index fiber (i.e. a = 0) scalar mode. Because of a lifting of degeneracy each scalar mode is associated with several vector ring modes. The horizontal lines represent the transmission windows of the fibers from Figs. 3, V and 4.

Fig. 3
Fig. 3

Calculated losses for three fibers with coated holes of various geometries, with material dispersion included. All calculations for two rings of holes. (a): Fibre I – Λ= 12.4 μm, b = 1.755 μm, a = 1.246 μm; (b): Fibre II – Λ= 16.9 μm, b = 2.472 μm, a = 1.681 μm; (c): Fibre III – Λ = 12.1 μm, b = 4.361 μm, a = 4.019 μm. In (a) and (b) arrows indicate coupling to m = 2 and m = 3 resonances of the inclusions. In (c) HOM indicates higher order core modes, and MTIR modes guided by modified total internal reflection. For all fibers n1, n2 and n3 are 1 and the wavelength dependent refractive indices of polycarbonate and polymethyl methacrylate, respectively.

Fig. 4
Fig. 4

(a) - (c) Spectra of several fibers corresponding to those modelled in Fig. 3. The edges of the transmission windows and position of resonances derived from the calculations are indicated. The insets show the endface of each fiber. (d) Micrograph of a fiber with the inset showing part of a ring.

Fig. 5
Fig. 5

(a) Overall width of the longest-wavelength transmission window and position of the interruptions as determined from the cutoffs given in Fig. 2 using the same parameters and no material dispersion. The point at a/b = 1 shows the maximum possible width for a sparse structure with no coupling between the inclusions. (b) Same with b = 1.8 μm and material dispersion of PMMA and PC included.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V p 2 π ( b a ) λ n 2 2 n 3 2 = arctan n 3 2 n 1 2 n 2 2 n 3 2 + p π , p = 0 , 1 , 2 , ....
b λ ( 1 a b ) = 1 2 π 1 n 2 2 n 3 2 V p ,
n hom = ( a b ) 2 n 1 2 + ( 1 ( a b ) 2 ) n 2 2 ,
log 2 ( λ p λ p + 1 ) = log 2 ( 1 + π V p ) .

Metrics