Abstract

An organic laser based on a monodisperse star-shaped oligofluorene gain medium has been embodied in mechanically flexible format with distributed feedback templated from a holographic master grating. Laser emission was obtained from 425 to 442.5 nm with lowest soft pump threshold at 14.4 μJ/cm2 (2.7 kW/cm2). We compare the performance of such lasers with and without encapsulation. Encapsulation enables stable operation in ambient atmosphere at a 1/e degradation energy dosage of 53 J/cm2.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Samuel, and G. Turnbull, "Organic Semiconductor Lasers," Chem. Rev. 107, 1272-1295 (2007).
    [CrossRef] [PubMed]
  2. C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
    [CrossRef]
  3. M. Berggren, A. Dodabalapur, R. E. S. A. Timko, and O. Nalamasu, "Organic solid-state lasers with imprinted gratings on plastic substrates," Appl. Phys. Lett. 72, 410-411 (1998).
    [CrossRef]
  4. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, "A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure," Appl. Phys. Lett. 77, 2310-2312 (2000).
    [CrossRef]
  5. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, "Very compact tunable solid-state laser utilizing a thin-film organic semiconductor," Opt. Lett. 26, 593-595 (2001).
    [CrossRef]
  6. M. Lu, B. Cunningham, S.-J. Park, and J. Eden, "Vertically emitting, dye-doped polymer laser in the green (λ ∼ 536 nm) with a second order distributed feedback grating fabricated by replica molding," Opt. Commun. 281, 3159-3162 (2008).
    [CrossRef]
  7. S. Richardson, "The Fabrication and Lithography of Conjugated Polymer Distributed Feedback Lasers and Development of their Applications," Ph.D. thesis, University of St. Andrews, School of Physics and Astronomy (2007).
  8. S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, "Improved operational lifetime of semiconducting polymer lasers by encapsulation," Appl. Phys. Lett. 91, 261104 (2007).
    [CrossRef]
  9. D. Pisignano, L. Persano, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, "Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography," Appl. Phys. Lett. 83, 2545-2547 (2003).
    [CrossRef]
  10. J. R. Lawrence, G. A. Turnbull, and I. D. W. Samuel, "Polymer laser fabricated by a simple micromolding process," Appl. Phys. Lett. 82, 4023-4025 (2003).
    [CrossRef]
  11. M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, "Low-Threshold Photopumped Distributed Feedback Plastic Laser Made by Replica Molding," Jpn. J. Appl. Phys. 42, 5590-5593 (2003).
    [CrossRef]
  12. M. H. Song, B. Wenger, and R. H. Friend, "Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer," J. Appl. Phys. 104, 033107 (2008).
    [CrossRef]
  13. A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D. C. Bradley, and M. Koeberg, "Synthesis and Properties of Monodisperse Oligofluorene-Functionalized Truxenes: Highly Fluorescent Star-Shaped Architectures," J. Am. Chem. Soc. 126, 13695-13702 (2004).
    [CrossRef] [PubMed]
  14. G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Low-threshold organic laser based on an oligofluorene truxene with low optical losses," Appl. Phys. Lett. 94, 243304 (2009).
    [CrossRef]
  15. Y. Wang, G. Tsiminis, Y. Yang, A. Ruseckas, A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene," Synth. Met. 160, 1397-1400 (2010).
    [CrossRef]
  16. B. Guilhabert, N. Laurand, J. Herrnsdorf, Y. Chen, A. R. Mackintosh, A. L. Kanibolotsky, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, "Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers," J. Opt. 12, 035503 (2010).
    [CrossRef]
  17. G. Stéphan, "Semiclassical study of the laser transition," Phys. Rev. A 55, 1371-1384 (1997).
    [CrossRef]
  18. Y. Boucher, A. Deryagin, V. Kuchinskii, and G. Sokolovskii, "Near-threshold spectral and modal characteristics of a curved-grating quantum-well distributed-feedback laser," Nanotechnology 14, 615-618 (2003).
    [CrossRef]
  19. Y. Boucher, and P. Féron, "Generalized transfer function: A simple model applied to active single-mode microring resonators," Opt. Commun. 282, 3940-3947 (2009).
    [CrossRef]
  20. G. Pert, "Output characteristics of amplified-stimulated-emission lasers," J. Opt. Soc. Am. B 11, 1425-1435 (1994).
    [CrossRef]
  21. L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, "Applicability conditions and experimental analysis of the variable stripe length method for gain measurements," Opt. Commun. 229, 337-348 (2004).
    [CrossRef]
  22. A. Costela, O. García, and L. Cerdán, "I. García -Moreno, and R. Sastre, "Amplified spontaneous emission and optical gain measurements from pyrromethene 567 - doped polymer waveguides and quasi-waveguides," Opt. Express 16, 7023-7036 (2008).
    [CrossRef] [PubMed]
  23. A. Costela, O. García, and L. Cerdán, "I. García -Moreno, and R. Sastre, "Amplified spontaneous emission and optical gain measurements from pyrromethene 567 - doped polymer waveguides and quasi-waveguides: erratum," Opt. Express 16, 7587 (2008).
    [CrossRef]
  24. The Mathworks, Matlab Documentation. Available online at http://www.mathworks.com/.
  25. R. Xia, W.-Y. Lai, P. A. Levermore, W. Huang, and D. D. C. Bradley, "Low-Threshold Distributed-Feedback Lasers Based on Pyrene-Cored Starburst Molecules with 1,3,6,8-Attached Oligo(9,9-Dialkylfluorene) Arms," Adv. Funct. Mater. 19, 2844-2850 (2009).
    [CrossRef]
  26. G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, "Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser," Phys. Rev. B 64, 125122 (2001).
    [CrossRef]

2010 (2)

Y. Wang, G. Tsiminis, Y. Yang, A. Ruseckas, A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene," Synth. Met. 160, 1397-1400 (2010).
[CrossRef]

B. Guilhabert, N. Laurand, J. Herrnsdorf, Y. Chen, A. R. Mackintosh, A. L. Kanibolotsky, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, "Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers," J. Opt. 12, 035503 (2010).
[CrossRef]

2009 (3)

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Low-threshold organic laser based on an oligofluorene truxene with low optical losses," Appl. Phys. Lett. 94, 243304 (2009).
[CrossRef]

Y. Boucher, and P. Féron, "Generalized transfer function: A simple model applied to active single-mode microring resonators," Opt. Commun. 282, 3940-3947 (2009).
[CrossRef]

R. Xia, W.-Y. Lai, P. A. Levermore, W. Huang, and D. D. C. Bradley, "Low-Threshold Distributed-Feedback Lasers Based on Pyrene-Cored Starburst Molecules with 1,3,6,8-Attached Oligo(9,9-Dialkylfluorene) Arms," Adv. Funct. Mater. 19, 2844-2850 (2009).
[CrossRef]

2008 (4)

A. Costela, O. García, and L. Cerdán, "I. García -Moreno, and R. Sastre, "Amplified spontaneous emission and optical gain measurements from pyrromethene 567 - doped polymer waveguides and quasi-waveguides," Opt. Express 16, 7023-7036 (2008).
[CrossRef] [PubMed]

A. Costela, O. García, and L. Cerdán, "I. García -Moreno, and R. Sastre, "Amplified spontaneous emission and optical gain measurements from pyrromethene 567 - doped polymer waveguides and quasi-waveguides: erratum," Opt. Express 16, 7587 (2008).
[CrossRef]

M. H. Song, B. Wenger, and R. H. Friend, "Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer," J. Appl. Phys. 104, 033107 (2008).
[CrossRef]

M. Lu, B. Cunningham, S.-J. Park, and J. Eden, "Vertically emitting, dye-doped polymer laser in the green (λ ∼ 536 nm) with a second order distributed feedback grating fabricated by replica molding," Opt. Commun. 281, 3159-3162 (2008).
[CrossRef]

2007 (2)

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, "Improved operational lifetime of semiconducting polymer lasers by encapsulation," Appl. Phys. Lett. 91, 261104 (2007).
[CrossRef]

I. Samuel, and G. Turnbull, "Organic Semiconductor Lasers," Chem. Rev. 107, 1272-1295 (2007).
[CrossRef] [PubMed]

2004 (2)

A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D. C. Bradley, and M. Koeberg, "Synthesis and Properties of Monodisperse Oligofluorene-Functionalized Truxenes: Highly Fluorescent Star-Shaped Architectures," J. Am. Chem. Soc. 126, 13695-13702 (2004).
[CrossRef] [PubMed]

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, "Applicability conditions and experimental analysis of the variable stripe length method for gain measurements," Opt. Commun. 229, 337-348 (2004).
[CrossRef]

2003 (4)

Y. Boucher, A. Deryagin, V. Kuchinskii, and G. Sokolovskii, "Near-threshold spectral and modal characteristics of a curved-grating quantum-well distributed-feedback laser," Nanotechnology 14, 615-618 (2003).
[CrossRef]

D. Pisignano, L. Persano, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, "Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography," Appl. Phys. Lett. 83, 2545-2547 (2003).
[CrossRef]

J. R. Lawrence, G. A. Turnbull, and I. D. W. Samuel, "Polymer laser fabricated by a simple micromolding process," Appl. Phys. Lett. 82, 4023-4025 (2003).
[CrossRef]

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, "Low-Threshold Photopumped Distributed Feedback Plastic Laser Made by Replica Molding," Jpn. J. Appl. Phys. 42, 5590-5593 (2003).
[CrossRef]

2001 (2)

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, "Very compact tunable solid-state laser utilizing a thin-film organic semiconductor," Opt. Lett. 26, 593-595 (2001).
[CrossRef]

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, "Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser," Phys. Rev. B 64, 125122 (2001).
[CrossRef]

2000 (1)

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, "A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure," Appl. Phys. Lett. 77, 2310-2312 (2000).
[CrossRef]

1998 (2)

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
[CrossRef]

M. Berggren, A. Dodabalapur, R. E. S. A. Timko, and O. Nalamasu, "Organic solid-state lasers with imprinted gratings on plastic substrates," Appl. Phys. Lett. 72, 410-411 (1998).
[CrossRef]

1997 (1)

G. Stéphan, "Semiclassical study of the laser transition," Phys. Rev. A 55, 1371-1384 (1997).
[CrossRef]

1994 (1)

G. Pert, "Output characteristics of amplified-stimulated-emission lasers," J. Opt. Soc. Am. B 11, 1425-1435 (1994).
[CrossRef]

Andrew, P.

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, "Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser," Phys. Rev. B 64, 125122 (2001).
[CrossRef]

Barbarella, G.

D. Pisignano, L. Persano, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, "Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography," Appl. Phys. Lett. 83, 2545-2547 (2003).
[CrossRef]

Barnes, W. L.

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, "Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser," Phys. Rev. B 64, 125122 (2001).
[CrossRef]

Berggren, M.

M. Berggren, A. Dodabalapur, R. E. S. A. Timko, and O. Nalamasu, "Organic solid-state lasers with imprinted gratings on plastic substrates," Appl. Phys. Lett. 72, 410-411 (1998).
[CrossRef]

Berleb, S.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, "Very compact tunable solid-state laser utilizing a thin-film organic semiconductor," Opt. Lett. 26, 593-595 (2001).
[CrossRef]

Berridge, R.

A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D. C. Bradley, and M. Koeberg, "Synthesis and Properties of Monodisperse Oligofluorene-Functionalized Truxenes: Highly Fluorescent Star-Shaped Architectures," J. Am. Chem. Soc. 126, 13695-13702 (2004).
[CrossRef] [PubMed]

Bettotti, P.

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, "Applicability conditions and experimental analysis of the variable stripe length method for gain measurements," Opt. Commun. 229, 337-348 (2004).
[CrossRef]

Boucher, Y.

Y. Boucher, and P. Féron, "Generalized transfer function: A simple model applied to active single-mode microring resonators," Opt. Commun. 282, 3940-3947 (2009).
[CrossRef]

Y. Boucher, A. Deryagin, V. Kuchinskii, and G. Sokolovskii, "Near-threshold spectral and modal characteristics of a curved-grating quantum-well distributed-feedback laser," Nanotechnology 14, 615-618 (2003).
[CrossRef]

Bradley, D. D. C.

R. Xia, W.-Y. Lai, P. A. Levermore, W. Huang, and D. D. C. Bradley, "Low-Threshold Distributed-Feedback Lasers Based on Pyrene-Cored Starburst Molecules with 1,3,6,8-Attached Oligo(9,9-Dialkylfluorene) Arms," Adv. Funct. Mater. 19, 2844-2850 (2009).
[CrossRef]

A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D. C. Bradley, and M. Koeberg, "Synthesis and Properties of Monodisperse Oligofluorene-Functionalized Truxenes: Highly Fluorescent Star-Shaped Architectures," J. Am. Chem. Soc. 126, 13695-13702 (2004).
[CrossRef] [PubMed]

Brütting, W.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, "Very compact tunable solid-state laser utilizing a thin-film organic semiconductor," Opt. Lett. 26, 593-595 (2001).
[CrossRef]

Cazzanelli, M.

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, "Applicability conditions and experimental analysis of the variable stripe length method for gain measurements," Opt. Commun. 229, 337-348 (2004).
[CrossRef]

Cerdán, L.

A. Costela, O. García, and L. Cerdán, "I. García -Moreno, and R. Sastre, "Amplified spontaneous emission and optical gain measurements from pyrromethene 567 - doped polymer waveguides and quasi-waveguides," Opt. Express 16, 7023-7036 (2008).
[CrossRef] [PubMed]

A. Costela, O. García, and L. Cerdán, "I. García -Moreno, and R. Sastre, "Amplified spontaneous emission and optical gain measurements from pyrromethene 567 - doped polymer waveguides and quasi-waveguides: erratum," Opt. Express 16, 7587 (2008).
[CrossRef]

Chen, Y.

B. Guilhabert, N. Laurand, J. Herrnsdorf, Y. Chen, A. R. Mackintosh, A. L. Kanibolotsky, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, "Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers," J. Opt. 12, 035503 (2010).
[CrossRef]

Cingolani, R.

D. Pisignano, L. Persano, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, "Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography," Appl. Phys. Lett. 83, 2545-2547 (2003).
[CrossRef]

Costela, A.

A. Costela, O. García, and L. Cerdán, "I. García -Moreno, and R. Sastre, "Amplified spontaneous emission and optical gain measurements from pyrromethene 567 - doped polymer waveguides and quasi-waveguides: erratum," Opt. Express 16, 7587 (2008).
[CrossRef]

A. Costela, O. García, and L. Cerdán, "I. García -Moreno, and R. Sastre, "Amplified spontaneous emission and optical gain measurements from pyrromethene 567 - doped polymer waveguides and quasi-waveguides," Opt. Express 16, 7023-7036 (2008).
[CrossRef] [PubMed]

Cunningham, B.

M. Lu, B. Cunningham, S.-J. Park, and J. Eden, "Vertically emitting, dye-doped polymer laser in the green (λ ∼ 536 nm) with a second order distributed feedback grating fabricated by replica molding," Opt. Commun. 281, 3159-3162 (2008).
[CrossRef]

Dawson, M. D.

B. Guilhabert, N. Laurand, J. Herrnsdorf, Y. Chen, A. R. Mackintosh, A. L. Kanibolotsky, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, "Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers," J. Opt. 12, 035503 (2010).
[CrossRef]

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Low-threshold organic laser based on an oligofluorene truxene with low optical losses," Appl. Phys. Lett. 94, 243304 (2009).
[CrossRef]

Deryagin, A.

Y. Boucher, A. Deryagin, V. Kuchinskii, and G. Sokolovskii, "Near-threshold spectral and modal characteristics of a curved-grating quantum-well distributed-feedback laser," Nanotechnology 14, 615-618 (2003).
[CrossRef]

Dodabalapur, A.

M. Berggren, A. Dodabalapur, R. E. S. A. Timko, and O. Nalamasu, "Organic solid-state lasers with imprinted gratings on plastic substrates," Appl. Phys. Lett. 72, 410-411 (1998).
[CrossRef]

Eden, J.

M. Lu, B. Cunningham, S.-J. Park, and J. Eden, "Vertically emitting, dye-doped polymer laser in the green (λ ∼ 536 nm) with a second order distributed feedback grating fabricated by replica molding," Opt. Commun. 281, 3159-3162 (2008).
[CrossRef]

Favaretto, L.

D. Pisignano, L. Persano, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, "Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography," Appl. Phys. Lett. 83, 2545-2547 (2003).
[CrossRef]

Feldmann, J.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, "Very compact tunable solid-state laser utilizing a thin-film organic semiconductor," Opt. Lett. 26, 593-595 (2001).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, "A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure," Appl. Phys. Lett. 77, 2310-2312 (2000).
[CrossRef]

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
[CrossRef]

Féron, P.

Y. Boucher, and P. Féron, "Generalized transfer function: A simple model applied to active single-mode microring resonators," Opt. Commun. 282, 3940-3947 (2009).
[CrossRef]

Friend, R. H.

M. H. Song, B. Wenger, and R. H. Friend, "Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer," J. Appl. Phys. 104, 033107 (2008).
[CrossRef]

García, O.

A. Costela, O. García, and L. Cerdán, "I. García -Moreno, and R. Sastre, "Amplified spontaneous emission and optical gain measurements from pyrromethene 567 - doped polymer waveguides and quasi-waveguides," Opt. Express 16, 7023-7036 (2008).
[CrossRef] [PubMed]

A. Costela, O. García, and L. Cerdán, "I. García -Moreno, and R. Sastre, "Amplified spontaneous emission and optical gain measurements from pyrromethene 567 - doped polymer waveguides and quasi-waveguides: erratum," Opt. Express 16, 7587 (2008).
[CrossRef]

Gaudin, O. P. M.

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, "Improved operational lifetime of semiconducting polymer lasers by encapsulation," Appl. Phys. Lett. 91, 261104 (2007).
[CrossRef]

Gigli, G.

D. Pisignano, L. Persano, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, "Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography," Appl. Phys. Lett. 83, 2545-2547 (2003).
[CrossRef]

Gombert, A.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, "Very compact tunable solid-state laser utilizing a thin-film organic semiconductor," Opt. Lett. 26, 593-595 (2001).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, "A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure," Appl. Phys. Lett. 77, 2310-2312 (2000).
[CrossRef]

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
[CrossRef]

Gu, E.

B. Guilhabert, N. Laurand, J. Herrnsdorf, Y. Chen, A. R. Mackintosh, A. L. Kanibolotsky, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, "Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers," J. Opt. 12, 035503 (2010).
[CrossRef]

Guilhabert, B.

B. Guilhabert, N. Laurand, J. Herrnsdorf, Y. Chen, A. R. Mackintosh, A. L. Kanibolotsky, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, "Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers," J. Opt. 12, 035503 (2010).
[CrossRef]

Haugeneder, A.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
[CrossRef]

Herrnsdorf, J.

B. Guilhabert, N. Laurand, J. Herrnsdorf, Y. Chen, A. R. Mackintosh, A. L. Kanibolotsky, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, "Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers," J. Opt. 12, 035503 (2010).
[CrossRef]

Hilmer, M.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
[CrossRef]

Huang, W.

R. Xia, W.-Y. Lai, P. A. Levermore, W. Huang, and D. D. C. Bradley, "Low-Threshold Distributed-Feedback Lasers Based on Pyrene-Cored Starburst Molecules with 1,3,6,8-Attached Oligo(9,9-Dialkylfluorene) Arms," Adv. Funct. Mater. 19, 2844-2850 (2009).
[CrossRef]

Ichikawa, M.

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, "Low-Threshold Photopumped Distributed Feedback Plastic Laser Made by Replica Molding," Jpn. J. Appl. Phys. 42, 5590-5593 (2003).
[CrossRef]

Jory, M. J.

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, "Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser," Phys. Rev. B 64, 125122 (2001).
[CrossRef]

Kallinger, C.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, "A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure," Appl. Phys. Lett. 77, 2310-2312 (2000).
[CrossRef]

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
[CrossRef]

Kanibolotsky, A. L.

Y. Wang, G. Tsiminis, Y. Yang, A. Ruseckas, A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene," Synth. Met. 160, 1397-1400 (2010).
[CrossRef]

B. Guilhabert, N. Laurand, J. Herrnsdorf, Y. Chen, A. R. Mackintosh, A. L. Kanibolotsky, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, "Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers," J. Opt. 12, 035503 (2010).
[CrossRef]

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Low-threshold organic laser based on an oligofluorene truxene with low optical losses," Appl. Phys. Lett. 94, 243304 (2009).
[CrossRef]

A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D. C. Bradley, and M. Koeberg, "Synthesis and Properties of Monodisperse Oligofluorene-Functionalized Truxenes: Highly Fluorescent Star-Shaped Architectures," J. Am. Chem. Soc. 126, 13695-13702 (2004).
[CrossRef] [PubMed]

Koeberg, M.

A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D. C. Bradley, and M. Koeberg, "Synthesis and Properties of Monodisperse Oligofluorene-Functionalized Truxenes: Highly Fluorescent Star-Shaped Architectures," J. Am. Chem. Soc. 126, 13695-13702 (2004).
[CrossRef] [PubMed]

Koyama, T.

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, "Low-Threshold Photopumped Distributed Feedback Plastic Laser Made by Replica Molding," Jpn. J. Appl. Phys. 42, 5590-5593 (2003).
[CrossRef]

Kuchinskii, V.

Y. Boucher, A. Deryagin, V. Kuchinskii, and G. Sokolovskii, "Near-threshold spectral and modal characteristics of a curved-grating quantum-well distributed-feedback laser," Nanotechnology 14, 615-618 (2003).
[CrossRef]

Lai, W.-Y.

R. Xia, W.-Y. Lai, P. A. Levermore, W. Huang, and D. D. C. Bradley, "Low-Threshold Distributed-Feedback Lasers Based on Pyrene-Cored Starburst Molecules with 1,3,6,8-Attached Oligo(9,9-Dialkylfluorene) Arms," Adv. Funct. Mater. 19, 2844-2850 (2009).
[CrossRef]

Laurand, N.

B. Guilhabert, N. Laurand, J. Herrnsdorf, Y. Chen, A. R. Mackintosh, A. L. Kanibolotsky, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, "Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers," J. Opt. 12, 035503 (2010).
[CrossRef]

Lawrence, J. R.

J. R. Lawrence, G. A. Turnbull, and I. D. W. Samuel, "Polymer laser fabricated by a simple micromolding process," Appl. Phys. Lett. 82, 4023-4025 (2003).
[CrossRef]

Lemmer, U.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, "Very compact tunable solid-state laser utilizing a thin-film organic semiconductor," Opt. Lett. 26, 593-595 (2001).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, "A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure," Appl. Phys. Lett. 77, 2310-2312 (2000).
[CrossRef]

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
[CrossRef]

Levermore, P. A.

R. Xia, W.-Y. Lai, P. A. Levermore, W. Huang, and D. D. C. Bradley, "Low-Threshold Distributed-Feedback Lasers Based on Pyrene-Cored Starburst Molecules with 1,3,6,8-Attached Oligo(9,9-Dialkylfluorene) Arms," Adv. Funct. Mater. 19, 2844-2850 (2009).
[CrossRef]

Lu, M.

M. Lu, B. Cunningham, S.-J. Park, and J. Eden, "Vertically emitting, dye-doped polymer laser in the green (λ ∼ 536 nm) with a second order distributed feedback grating fabricated by replica molding," Opt. Commun. 281, 3159-3162 (2008).
[CrossRef]

Mackintosh, A. R.

B. Guilhabert, N. Laurand, J. Herrnsdorf, Y. Chen, A. R. Mackintosh, A. L. Kanibolotsky, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, "Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers," J. Opt. 12, 035503 (2010).
[CrossRef]

Mückl, A. G.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, "Very compact tunable solid-state laser utilizing a thin-film organic semiconductor," Opt. Lett. 26, 593-595 (2001).
[CrossRef]

Müllen, K.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
[CrossRef]

Nalamasu, O.

M. Berggren, A. Dodabalapur, R. E. S. A. Timko, and O. Nalamasu, "Organic solid-state lasers with imprinted gratings on plastic substrates," Appl. Phys. Lett. 72, 410-411 (1998).
[CrossRef]

Negro, L. D.

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, "Applicability conditions and experimental analysis of the variable stripe length method for gain measurements," Opt. Commun. 229, 337-348 (2004).
[CrossRef]

Pacifici, D.

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, "Applicability conditions and experimental analysis of the variable stripe length method for gain measurements," Opt. Commun. 229, 337-348 (2004).
[CrossRef]

Park, S.-J.

M. Lu, B. Cunningham, S.-J. Park, and J. Eden, "Vertically emitting, dye-doped polymer laser in the green (λ ∼ 536 nm) with a second order distributed feedback grating fabricated by replica molding," Opt. Commun. 281, 3159-3162 (2008).
[CrossRef]

Pavesi, L.

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, "Applicability conditions and experimental analysis of the variable stripe length method for gain measurements," Opt. Commun. 229, 337-348 (2004).
[CrossRef]

Perepichka, I. F.

Y. Wang, G. Tsiminis, Y. Yang, A. Ruseckas, A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene," Synth. Met. 160, 1397-1400 (2010).
[CrossRef]

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Low-threshold organic laser based on an oligofluorene truxene with low optical losses," Appl. Phys. Lett. 94, 243304 (2009).
[CrossRef]

A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D. C. Bradley, and M. Koeberg, "Synthesis and Properties of Monodisperse Oligofluorene-Functionalized Truxenes: Highly Fluorescent Star-Shaped Architectures," J. Am. Chem. Soc. 126, 13695-13702 (2004).
[CrossRef] [PubMed]

Perner, M.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
[CrossRef]

Persano, L.

D. Pisignano, L. Persano, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, "Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography," Appl. Phys. Lett. 83, 2545-2547 (2003).
[CrossRef]

Pert, G.

G. Pert, "Output characteristics of amplified-stimulated-emission lasers," J. Opt. Soc. Am. B 11, 1425-1435 (1994).
[CrossRef]

Pethrick, R. A.

B. Guilhabert, N. Laurand, J. Herrnsdorf, Y. Chen, A. R. Mackintosh, A. L. Kanibolotsky, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, "Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers," J. Opt. 12, 035503 (2010).
[CrossRef]

Pisignano, D.

D. Pisignano, L. Persano, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, "Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography," Appl. Phys. Lett. 83, 2545-2547 (2003).
[CrossRef]

Richardson, S.

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, "Improved operational lifetime of semiconducting polymer lasers by encapsulation," Appl. Phys. Lett. 91, 261104 (2007).
[CrossRef]

Riechel, S.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, "Very compact tunable solid-state laser utilizing a thin-film organic semiconductor," Opt. Lett. 26, 593-595 (2001).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, "A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure," Appl. Phys. Lett. 77, 2310-2312 (2000).
[CrossRef]

Ruseckas, A.

Y. Wang, G. Tsiminis, Y. Yang, A. Ruseckas, A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene," Synth. Met. 160, 1397-1400 (2010).
[CrossRef]

Samuel, I.

I. Samuel, and G. Turnbull, "Organic Semiconductor Lasers," Chem. Rev. 107, 1272-1295 (2007).
[CrossRef] [PubMed]

Samuel, I. D.

Y. Wang, G. Tsiminis, Y. Yang, A. Ruseckas, A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene," Synth. Met. 160, 1397-1400 (2010).
[CrossRef]

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Low-threshold organic laser based on an oligofluorene truxene with low optical losses," Appl. Phys. Lett. 94, 243304 (2009).
[CrossRef]

Samuel, I. D. W.

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, "Improved operational lifetime of semiconducting polymer lasers by encapsulation," Appl. Phys. Lett. 91, 261104 (2007).
[CrossRef]

J. R. Lawrence, G. A. Turnbull, and I. D. W. Samuel, "Polymer laser fabricated by a simple micromolding process," Appl. Phys. Lett. 82, 4023-4025 (2003).
[CrossRef]

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, "Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser," Phys. Rev. B 64, 125122 (2001).
[CrossRef]

Scherf, U.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, "A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure," Appl. Phys. Lett. 77, 2310-2312 (2000).
[CrossRef]

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
[CrossRef]

Shaw, P. E.

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Low-threshold organic laser based on an oligofluorene truxene with low optical losses," Appl. Phys. Lett. 94, 243304 (2009).
[CrossRef]

Skabara, P. J.

Y. Wang, G. Tsiminis, Y. Yang, A. Ruseckas, A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene," Synth. Met. 160, 1397-1400 (2010).
[CrossRef]

B. Guilhabert, N. Laurand, J. Herrnsdorf, Y. Chen, A. R. Mackintosh, A. L. Kanibolotsky, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, "Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers," J. Opt. 12, 035503 (2010).
[CrossRef]

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Low-threshold organic laser based on an oligofluorene truxene with low optical losses," Appl. Phys. Lett. 94, 243304 (2009).
[CrossRef]

A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D. C. Bradley, and M. Koeberg, "Synthesis and Properties of Monodisperse Oligofluorene-Functionalized Truxenes: Highly Fluorescent Star-Shaped Architectures," J. Am. Chem. Soc. 126, 13695-13702 (2004).
[CrossRef] [PubMed]

Sokolovskii, G.

Y. Boucher, A. Deryagin, V. Kuchinskii, and G. Sokolovskii, "Near-threshold spectral and modal characteristics of a curved-grating quantum-well distributed-feedback laser," Nanotechnology 14, 615-618 (2003).
[CrossRef]

Song, M. H.

M. H. Song, B. Wenger, and R. H. Friend, "Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer," J. Appl. Phys. 104, 033107 (2008).
[CrossRef]

Spirkl, W.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
[CrossRef]

Stéphan, G.

G. Stéphan, "Semiclassical study of the laser transition," Phys. Rev. A 55, 1371-1384 (1997).
[CrossRef]

Suganuma, N.

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, "Low-Threshold Photopumped Distributed Feedback Plastic Laser Made by Replica Molding," Jpn. J. Appl. Phys. 42, 5590-5593 (2003).
[CrossRef]

Tanaka, Y.

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, "Low-Threshold Photopumped Distributed Feedback Plastic Laser Made by Replica Molding," Jpn. J. Appl. Phys. 42, 5590-5593 (2003).
[CrossRef]

Taniguchi, Y.

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, "Low-Threshold Photopumped Distributed Feedback Plastic Laser Made by Replica Molding," Jpn. J. Appl. Phys. 42, 5590-5593 (2003).
[CrossRef]

Timko, R. E. S. A.

M. Berggren, A. Dodabalapur, R. E. S. A. Timko, and O. Nalamasu, "Organic solid-state lasers with imprinted gratings on plastic substrates," Appl. Phys. Lett. 72, 410-411 (1998).
[CrossRef]

Tsiminis, G.

Y. Wang, G. Tsiminis, Y. Yang, A. Ruseckas, A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene," Synth. Met. 160, 1397-1400 (2010).
[CrossRef]

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Low-threshold organic laser based on an oligofluorene truxene with low optical losses," Appl. Phys. Lett. 94, 243304 (2009).
[CrossRef]

Turnbull, G.

I. Samuel, and G. Turnbull, "Organic Semiconductor Lasers," Chem. Rev. 107, 1272-1295 (2007).
[CrossRef] [PubMed]

Turnbull, G. A.

Y. Wang, G. Tsiminis, Y. Yang, A. Ruseckas, A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene," Synth. Met. 160, 1397-1400 (2010).
[CrossRef]

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Low-threshold organic laser based on an oligofluorene truxene with low optical losses," Appl. Phys. Lett. 94, 243304 (2009).
[CrossRef]

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, "Improved operational lifetime of semiconducting polymer lasers by encapsulation," Appl. Phys. Lett. 91, 261104 (2007).
[CrossRef]

J. R. Lawrence, G. A. Turnbull, and I. D. W. Samuel, "Polymer laser fabricated by a simple micromolding process," Appl. Phys. Lett. 82, 4023-4025 (2003).
[CrossRef]

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, "Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser," Phys. Rev. B 64, 125122 (2001).
[CrossRef]

Visconti, P.

D. Pisignano, L. Persano, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, "Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography," Appl. Phys. Lett. 83, 2545-2547 (2003).
[CrossRef]

Wang, Y.

Y. Wang, G. Tsiminis, Y. Yang, A. Ruseckas, A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene," Synth. Met. 160, 1397-1400 (2010).
[CrossRef]

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Low-threshold organic laser based on an oligofluorene truxene with low optical losses," Appl. Phys. Lett. 94, 243304 (2009).
[CrossRef]

Wenger, B.

M. H. Song, B. Wenger, and R. H. Friend, "Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer," J. Appl. Phys. 104, 033107 (2008).
[CrossRef]

Wittwer, V.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, "Very compact tunable solid-state laser utilizing a thin-film organic semiconductor," Opt. Lett. 26, 593-595 (2001).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, "A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure," Appl. Phys. Lett. 77, 2310-2312 (2000).
[CrossRef]

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
[CrossRef]

Xia, R.

R. Xia, W.-Y. Lai, P. A. Levermore, W. Huang, and D. D. C. Bradley, "Low-Threshold Distributed-Feedback Lasers Based on Pyrene-Cored Starburst Molecules with 1,3,6,8-Attached Oligo(9,9-Dialkylfluorene) Arms," Adv. Funct. Mater. 19, 2844-2850 (2009).
[CrossRef]

Yang, Y.

Y. Wang, G. Tsiminis, Y. Yang, A. Ruseckas, A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene," Synth. Met. 160, 1397-1400 (2010).
[CrossRef]

Adv. Funct. Mater. (1)

R. Xia, W.-Y. Lai, P. A. Levermore, W. Huang, and D. D. C. Bradley, "Low-Threshold Distributed-Feedback Lasers Based on Pyrene-Cored Starburst Molecules with 1,3,6,8-Attached Oligo(9,9-Dialkylfluorene) Arms," Adv. Funct. Mater. 19, 2844-2850 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, "A Flexible Conjugated Polymer Laser," Adv. Mater. (Deerfield Beach Fla.) 10, 920-923 (1998).
[CrossRef]

Appl. Phys. Lett. (6)

M. Berggren, A. Dodabalapur, R. E. S. A. Timko, and O. Nalamasu, "Organic solid-state lasers with imprinted gratings on plastic substrates," Appl. Phys. Lett. 72, 410-411 (1998).
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, "A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure," Appl. Phys. Lett. 77, 2310-2312 (2000).
[CrossRef]

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, "Improved operational lifetime of semiconducting polymer lasers by encapsulation," Appl. Phys. Lett. 91, 261104 (2007).
[CrossRef]

D. Pisignano, L. Persano, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, "Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography," Appl. Phys. Lett. 83, 2545-2547 (2003).
[CrossRef]

J. R. Lawrence, G. A. Turnbull, and I. D. W. Samuel, "Polymer laser fabricated by a simple micromolding process," Appl. Phys. Lett. 82, 4023-4025 (2003).
[CrossRef]

G. Tsiminis, Y. Wang, P. E. Shaw, A. L. Kanibolotsky, I. F. Perepichka, M. D. Dawson, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Low-threshold organic laser based on an oligofluorene truxene with low optical losses," Appl. Phys. Lett. 94, 243304 (2009).
[CrossRef]

Chem. Rev. (1)

I. Samuel, and G. Turnbull, "Organic Semiconductor Lasers," Chem. Rev. 107, 1272-1295 (2007).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D. C. Bradley, and M. Koeberg, "Synthesis and Properties of Monodisperse Oligofluorene-Functionalized Truxenes: Highly Fluorescent Star-Shaped Architectures," J. Am. Chem. Soc. 126, 13695-13702 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. H. Song, B. Wenger, and R. H. Friend, "Tuning the wavelength of lasing emission in organic semiconducting laser by the orientation of liquid crystalline conjugated polymer," J. Appl. Phys. 104, 033107 (2008).
[CrossRef]

J. Opt. (1)

B. Guilhabert, N. Laurand, J. Herrnsdorf, Y. Chen, A. R. Mackintosh, A. L. Kanibolotsky, E. Gu, P. J. Skabara, R. A. Pethrick, and M. D. Dawson, "Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers," J. Opt. 12, 035503 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

G. Pert, "Output characteristics of amplified-stimulated-emission lasers," J. Opt. Soc. Am. B 11, 1425-1435 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, and Y. Taniguchi, "Low-Threshold Photopumped Distributed Feedback Plastic Laser Made by Replica Molding," Jpn. J. Appl. Phys. 42, 5590-5593 (2003).
[CrossRef]

Nanotechnology (1)

Y. Boucher, A. Deryagin, V. Kuchinskii, and G. Sokolovskii, "Near-threshold spectral and modal characteristics of a curved-grating quantum-well distributed-feedback laser," Nanotechnology 14, 615-618 (2003).
[CrossRef]

Opt. Commun. (3)

Y. Boucher, and P. Féron, "Generalized transfer function: A simple model applied to active single-mode microring resonators," Opt. Commun. 282, 3940-3947 (2009).
[CrossRef]

L. D. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, "Applicability conditions and experimental analysis of the variable stripe length method for gain measurements," Opt. Commun. 229, 337-348 (2004).
[CrossRef]

M. Lu, B. Cunningham, S.-J. Park, and J. Eden, "Vertically emitting, dye-doped polymer laser in the green (λ ∼ 536 nm) with a second order distributed feedback grating fabricated by replica molding," Opt. Commun. 281, 3159-3162 (2008).
[CrossRef]

Opt. Express (2)

A. Costela, O. García, and L. Cerdán, "I. García -Moreno, and R. Sastre, "Amplified spontaneous emission and optical gain measurements from pyrromethene 567 - doped polymer waveguides and quasi-waveguides," Opt. Express 16, 7023-7036 (2008).
[CrossRef] [PubMed]

A. Costela, O. García, and L. Cerdán, "I. García -Moreno, and R. Sastre, "Amplified spontaneous emission and optical gain measurements from pyrromethene 567 - doped polymer waveguides and quasi-waveguides: erratum," Opt. Express 16, 7587 (2008).
[CrossRef]

Opt. Lett. (1)

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, "Very compact tunable solid-state laser utilizing a thin-film organic semiconductor," Opt. Lett. 26, 593-595 (2001).
[CrossRef]

Phys. Rev. A (1)

G. Stéphan, "Semiclassical study of the laser transition," Phys. Rev. A 55, 1371-1384 (1997).
[CrossRef]

Phys. Rev. B (1)

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, "Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser," Phys. Rev. B 64, 125122 (2001).
[CrossRef]

Synth. Met. (1)

Y. Wang, G. Tsiminis, Y. Yang, A. Ruseckas, A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, G. A. Turnbull, and I. D. Samuel, "Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene," Synth. Met. 160, 1397-1400 (2010).
[CrossRef]

Other (2)

S. Richardson, "The Fabrication and Lithography of Conjugated Polymer Distributed Feedback Lasers and Development of their Applications," Ph.D. thesis, University of St. Andrews, School of Physics and Astronomy (2007).

The Mathworks, Matlab Documentation. Available online at http://www.mathworks.com/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

On the left, schematics of the device structure are shown: (a) unencapsulated and (b) encapsulated by an optical adhesive (OA). On the right side is (c) an AFM image of the reproduced grating and at the bottom (d) a plot of the surface profile perpendicular to the grating.

Fig. 2
Fig. 2

Transmission spectrum of an acetate sheet and normalized spectra of the PL and absorption of T3 in toluene solution.

Fig. 3
Fig. 3

Schematic of the setup for optical characterization.

Fig. 4
Fig. 4

Threshold measurement of an unencapsulated device fitted with Eq. (1) (fit 1) and (2) (fit 2). The curves given by the two models are not distinguishable at the scale of this plot. Fitting parameters are given in table 1.

Fig. 5
Fig. 5

Laser spectrum fitted by Gaussian decomposition. The unencapsulated sample has been pumped with the unfocussed (2.9 mm diameter) beam and satellite peaks are visible. The dominant peak has a linewidth of 0.25 nm full width half maximum. Inset: Threshold measurement fitted with Eq. (2).

Fig. 6
Fig. 6

(a) Photo of the operating sample, pumped with a focussed pump spot. (b) Image of the beam profile that is visible on the screen. The spectral maps in Fig. 7 are recorded from left to right across the waist of the fan-shaped beam. (c) Photography of a laser demonstrating mechanical flexibility. UV illumination is used to show the devices fluorescence.

Fig. 7
Fig. 7

Spectral map across the laser beam. (a) Pumped with the unfocussed 2.9 mm diameter beam at 4× threshold. A polariser has been used to distinguish the electrical field componenents polarised parallel (TE) and perpendicular (TM) to the grating. (b) The same sample pumped with a focussed pump spot (0.0014 cm2) at 5.5× threshold. Only a TE polarised signal has been detected.

Fig. 8
Fig. 8

The operational lifetime of the devices is examined by monitoring the laser intensity as a function of the total pump dosage the samples have been exposed to.

Tables (1)

Tables Icon

Table 1 Fitting parameters used in Fig. 4

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d I ASE d x = a F p 1 + I ASE / I sat + b I ASE ( F p / F th 1 + I ASE / I sat 1 )
I laser = I sat κ F p / F th 1 + I laser / I sat F p / F th

Metrics