Abstract

A weak (< 1000 G) magnetic field can influence photochemical processes through its effect on electron spin dynamics in a photogenerated radical pair. In a solution of pyrene and dimethylaniline this effect manifests as magnetic field-dependent exciplex fluorescence. Here we describe magnetofluorescence imaging (MFI). A localized magnetic null defines a fluorescence detection volume, which is scanned through a sample to create an image. MFI forms an image without lenses and in the presence of arbitrarily strong optical scattering. The resolution of MFI is in principle not limited by optical diffraction, although the present implementation is far from the diffraction limit.

© 2010 OSA

Full Article  |  PDF Article

Corrections

Nan Yang and Adam E. Cohen, "Optical imaging through scattering media via magnetically modulated fluorescence: Erratum," Opt. Express 19, 5397-5397 (2011)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-19-6-5397

References

  • View by:
  • |
  • |
  • |

  1. U. E. Steiner and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena,” Chem. Rev. 89(1), 51–147 (1989).
    [CrossRef]
  2. N. J. Turro, Modern Molecular Photochemistry (University Science Books, 1991).
  3. S. Nagakura, H. Hayashi, and T. Azumi, Dynamic Spin Chemistry: Magnetic Controls and Spin Dynamics of Chemical Reactions (Wiley-Kodansha, 1998).
  4. L. A. Margulis, I. V. Khudyakov, and V. A. Kuzmin, “Magnetic field effects on radical recombination in a cage and in the bulk of a viscous solvent,” Chem. Phys. Lett. 119(2-3), 244–250 (1985).
    [CrossRef]
  5. K. Bhattacharyya and M. Chowdhury, “Environmental and magnetic field effects on exciplex and twisted charge transfer emission,” Chem. Rev. 93(1), 507–535 (1993).
    [CrossRef]
  6. H. J. Werner, H. Staerk, and A. Weller, “Solvent, isotope, and magnetic-field effects in geminate recombination of radical ion-pairs,” J. Chem. Phys. 68(5), 2419–2426 (1978).
    [CrossRef]
  7. N. K. Petrov, A. I. Shushin, and E. L. Frankevich, “Solvent effect on magnetic field modulation of exciplex fluorescence in polar solutions,” Chem. Phys. Lett. 82(2), 339–343 (1981).
    [CrossRef]
  8. H. J. Werner, Z. Schulten, and K. Schulten, “Theory of the magnetic field modulated geminate recombination of radical ion pairs in polar solvents: application to the pyrene–N, N-dimethylaniline system,” J. Chem. Phys. 67(2), 646 (1977).
    [CrossRef]
  9. D. N. Nath and M. Chowdhury, “Effect of variation of dielectric constant on the magnetic field modulation of exciplex luminescence,” Pramana 34(1), 51–66 (1990).
    [CrossRef]
  10. C. R. Timmel and K. B. Henbest, “A study of spin chemistry in weak magnetic fields,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1825), 2573–2589 (2004).
    [CrossRef] [PubMed]
  11. K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
    [CrossRef] [PubMed]
  12. H. Staerk, W. Kuhnle, R. Treichel, and A. Weller, “Magnetic field dependence of intramolecular exciplex formation in polymethylene-linked A-D systems,” Chem. Phys. Lett. 118(1), 19–24 (1985).
    [CrossRef]
  13. Y. Tanimoto, N. Okada, and M. Itoh Kaoru, “Magnetic field effects on the fluorescence of intramolecular electron-donor-acceptor systems,” Chem. Phys. Lett. 136(1), 42–46 (1987).
    [CrossRef]
  14. H. Cao, K. Miyata, T. Tamura, Y. Fujiwara, A. Katsuki, C. H. Tung, and Y. Tanimoto, “Effects of high magnetic field on the intramolecular exciplex fluorescence of chain-linked phenanthrene and dimethylaniline,” J. Phys. Chem. A 101(4), 407–411 (1997).
    [CrossRef]
  15. A. Weller, H. Staerk, and R. Treichel, “Magnetic-field effects on geminate radical-pair recombination,” Faraday Discuss. Chem. Soc. 78, 271–278 (1984).
    [CrossRef]
  16. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
    [CrossRef] [PubMed]
  17. I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
    [CrossRef] [PubMed]
  18. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  19. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [CrossRef] [PubMed]

2010 (1)

I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
[CrossRef] [PubMed]

2008 (2)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[CrossRef] [PubMed]

2006 (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

2004 (1)

C. R. Timmel and K. B. Henbest, “A study of spin chemistry in weak magnetic fields,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1825), 2573–2589 (2004).
[CrossRef] [PubMed]

1997 (1)

H. Cao, K. Miyata, T. Tamura, Y. Fujiwara, A. Katsuki, C. H. Tung, and Y. Tanimoto, “Effects of high magnetic field on the intramolecular exciplex fluorescence of chain-linked phenanthrene and dimethylaniline,” J. Phys. Chem. A 101(4), 407–411 (1997).
[CrossRef]

1993 (1)

K. Bhattacharyya and M. Chowdhury, “Environmental and magnetic field effects on exciplex and twisted charge transfer emission,” Chem. Rev. 93(1), 507–535 (1993).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1990 (1)

D. N. Nath and M. Chowdhury, “Effect of variation of dielectric constant on the magnetic field modulation of exciplex luminescence,” Pramana 34(1), 51–66 (1990).
[CrossRef]

1989 (1)

U. E. Steiner and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena,” Chem. Rev. 89(1), 51–147 (1989).
[CrossRef]

1987 (1)

Y. Tanimoto, N. Okada, and M. Itoh Kaoru, “Magnetic field effects on the fluorescence of intramolecular electron-donor-acceptor systems,” Chem. Phys. Lett. 136(1), 42–46 (1987).
[CrossRef]

1985 (2)

H. Staerk, W. Kuhnle, R. Treichel, and A. Weller, “Magnetic field dependence of intramolecular exciplex formation in polymethylene-linked A-D systems,” Chem. Phys. Lett. 118(1), 19–24 (1985).
[CrossRef]

L. A. Margulis, I. V. Khudyakov, and V. A. Kuzmin, “Magnetic field effects on radical recombination in a cage and in the bulk of a viscous solvent,” Chem. Phys. Lett. 119(2-3), 244–250 (1985).
[CrossRef]

1984 (1)

A. Weller, H. Staerk, and R. Treichel, “Magnetic-field effects on geminate radical-pair recombination,” Faraday Discuss. Chem. Soc. 78, 271–278 (1984).
[CrossRef]

1981 (1)

N. K. Petrov, A. I. Shushin, and E. L. Frankevich, “Solvent effect on magnetic field modulation of exciplex fluorescence in polar solutions,” Chem. Phys. Lett. 82(2), 339–343 (1981).
[CrossRef]

1978 (1)

H. J. Werner, H. Staerk, and A. Weller, “Solvent, isotope, and magnetic-field effects in geminate recombination of radical ion-pairs,” J. Chem. Phys. 68(5), 2419–2426 (1978).
[CrossRef]

1977 (1)

H. J. Werner, Z. Schulten, and K. Schulten, “Theory of the magnetic field modulated geminate recombination of radical ion pairs in polar solvents: application to the pyrene–N, N-dimethylaniline system,” J. Chem. Phys. 67(2), 646 (1977).
[CrossRef]

Aegerter, C. M.

I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
[CrossRef] [PubMed]

Bhattacharyya, K.

K. Bhattacharyya and M. Chowdhury, “Environmental and magnetic field effects on exciplex and twisted charge transfer emission,” Chem. Rev. 93(1), 507–535 (1993).
[CrossRef]

Cao, H.

H. Cao, K. Miyata, T. Tamura, Y. Fujiwara, A. Katsuki, C. H. Tung, and Y. Tanimoto, “Effects of high magnetic field on the intramolecular exciplex fluorescence of chain-linked phenanthrene and dimethylaniline,” J. Phys. Chem. A 101(4), 407–411 (1997).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chowdhury, M.

K. Bhattacharyya and M. Chowdhury, “Environmental and magnetic field effects on exciplex and twisted charge transfer emission,” Chem. Rev. 93(1), 507–535 (1993).
[CrossRef]

D. N. Nath and M. Chowdhury, “Effect of variation of dielectric constant on the magnetic field modulation of exciplex luminescence,” Pramana 34(1), 51–66 (1990).
[CrossRef]

Cintolesi, F.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[CrossRef] [PubMed]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Frankevich, E. L.

N. K. Petrov, A. I. Shushin, and E. L. Frankevich, “Solvent effect on magnetic field modulation of exciplex fluorescence in polar solutions,” Chem. Phys. Lett. 82(2), 339–343 (1981).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujiwara, Y.

H. Cao, K. Miyata, T. Tamura, Y. Fujiwara, A. Katsuki, C. H. Tung, and Y. Tanimoto, “Effects of high magnetic field on the intramolecular exciplex fluorescence of chain-linked phenanthrene and dimethylaniline,” J. Phys. Chem. A 101(4), 407–411 (1997).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gust, D.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Henbest, K. B.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[CrossRef] [PubMed]

C. R. Timmel and K. B. Henbest, “A study of spin chemistry in weak magnetic fields,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1825), 2573–2589 (2004).
[CrossRef] [PubMed]

Hore, P. J.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Itoh Kaoru, M.

Y. Tanimoto, N. Okada, and M. Itoh Kaoru, “Magnetic field effects on the fluorescence of intramolecular electron-donor-acceptor systems,” Chem. Phys. Lett. 136(1), 42–46 (1987).
[CrossRef]

Katsuki, A.

H. Cao, K. Miyata, T. Tamura, Y. Fujiwara, A. Katsuki, C. H. Tung, and Y. Tanimoto, “Effects of high magnetic field on the intramolecular exciplex fluorescence of chain-linked phenanthrene and dimethylaniline,” J. Phys. Chem. A 101(4), 407–411 (1997).
[CrossRef]

Khudyakov, I. V.

L. A. Margulis, I. V. Khudyakov, and V. A. Kuzmin, “Magnetic field effects on radical recombination in a cage and in the bulk of a viscous solvent,” Chem. Phys. Lett. 119(2-3), 244–250 (1985).
[CrossRef]

Kuhnle, W.

H. Staerk, W. Kuhnle, R. Treichel, and A. Weller, “Magnetic field dependence of intramolecular exciplex formation in polymethylene-linked A-D systems,” Chem. Phys. Lett. 118(1), 19–24 (1985).
[CrossRef]

Kuprov, I.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[CrossRef] [PubMed]

Kuzmin, V. A.

L. A. Margulis, I. V. Khudyakov, and V. A. Kuzmin, “Magnetic field effects on radical recombination in a cage and in the bulk of a viscous solvent,” Chem. Phys. Lett. 119(2-3), 244–250 (1985).
[CrossRef]

Liddell, P. A.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Maeda, K.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[CrossRef] [PubMed]

Margulis, L. A.

L. A. Margulis, I. V. Khudyakov, and V. A. Kuzmin, “Magnetic field effects on radical recombination in a cage and in the bulk of a viscous solvent,” Chem. Phys. Lett. 119(2-3), 244–250 (1985).
[CrossRef]

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Miyata, K.

H. Cao, K. Miyata, T. Tamura, Y. Fujiwara, A. Katsuki, C. H. Tung, and Y. Tanimoto, “Effects of high magnetic field on the intramolecular exciplex fluorescence of chain-linked phenanthrene and dimethylaniline,” J. Phys. Chem. A 101(4), 407–411 (1997).
[CrossRef]

Nath, D. N.

D. N. Nath and M. Chowdhury, “Effect of variation of dielectric constant on the magnetic field modulation of exciplex luminescence,” Pramana 34(1), 51–66 (1990).
[CrossRef]

Okada, N.

Y. Tanimoto, N. Okada, and M. Itoh Kaoru, “Magnetic field effects on the fluorescence of intramolecular electron-donor-acceptor systems,” Chem. Phys. Lett. 136(1), 42–46 (1987).
[CrossRef]

Petrov, N. K.

N. K. Petrov, A. I. Shushin, and E. L. Frankevich, “Solvent effect on magnetic field modulation of exciplex fluorescence in polar solutions,” Chem. Phys. Lett. 82(2), 339–343 (1981).
[CrossRef]

Psaltis, D.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rodgers, C. T.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[CrossRef] [PubMed]

Schulten, K.

H. J. Werner, Z. Schulten, and K. Schulten, “Theory of the magnetic field modulated geminate recombination of radical ion pairs in polar solvents: application to the pyrene–N, N-dimethylaniline system,” J. Chem. Phys. 67(2), 646 (1977).
[CrossRef]

Schulten, Z.

H. J. Werner, Z. Schulten, and K. Schulten, “Theory of the magnetic field modulated geminate recombination of radical ion pairs in polar solvents: application to the pyrene–N, N-dimethylaniline system,” J. Chem. Phys. 67(2), 646 (1977).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shushin, A. I.

N. K. Petrov, A. I. Shushin, and E. L. Frankevich, “Solvent effect on magnetic field modulation of exciplex fluorescence in polar solutions,” Chem. Phys. Lett. 82(2), 339–343 (1981).
[CrossRef]

Staerk, H.

H. Staerk, W. Kuhnle, R. Treichel, and A. Weller, “Magnetic field dependence of intramolecular exciplex formation in polymethylene-linked A-D systems,” Chem. Phys. Lett. 118(1), 19–24 (1985).
[CrossRef]

A. Weller, H. Staerk, and R. Treichel, “Magnetic-field effects on geminate radical-pair recombination,” Faraday Discuss. Chem. Soc. 78, 271–278 (1984).
[CrossRef]

H. J. Werner, H. Staerk, and A. Weller, “Solvent, isotope, and magnetic-field effects in geminate recombination of radical ion-pairs,” J. Chem. Phys. 68(5), 2419–2426 (1978).
[CrossRef]

Steiner, U. E.

U. E. Steiner and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena,” Chem. Rev. 89(1), 51–147 (1989).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tamura, T.

H. Cao, K. Miyata, T. Tamura, Y. Fujiwara, A. Katsuki, C. H. Tung, and Y. Tanimoto, “Effects of high magnetic field on the intramolecular exciplex fluorescence of chain-linked phenanthrene and dimethylaniline,” J. Phys. Chem. A 101(4), 407–411 (1997).
[CrossRef]

Tanimoto, Y.

H. Cao, K. Miyata, T. Tamura, Y. Fujiwara, A. Katsuki, C. H. Tung, and Y. Tanimoto, “Effects of high magnetic field on the intramolecular exciplex fluorescence of chain-linked phenanthrene and dimethylaniline,” J. Phys. Chem. A 101(4), 407–411 (1997).
[CrossRef]

Y. Tanimoto, N. Okada, and M. Itoh Kaoru, “Magnetic field effects on the fluorescence of intramolecular electron-donor-acceptor systems,” Chem. Phys. Lett. 136(1), 42–46 (1987).
[CrossRef]

Timmel, C. R.

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[CrossRef] [PubMed]

C. R. Timmel and K. B. Henbest, “A study of spin chemistry in weak magnetic fields,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1825), 2573–2589 (2004).
[CrossRef] [PubMed]

Treichel, R.

H. Staerk, W. Kuhnle, R. Treichel, and A. Weller, “Magnetic field dependence of intramolecular exciplex formation in polymethylene-linked A-D systems,” Chem. Phys. Lett. 118(1), 19–24 (1985).
[CrossRef]

A. Weller, H. Staerk, and R. Treichel, “Magnetic-field effects on geminate radical-pair recombination,” Faraday Discuss. Chem. Soc. 78, 271–278 (1984).
[CrossRef]

Tung, C. H.

H. Cao, K. Miyata, T. Tamura, Y. Fujiwara, A. Katsuki, C. H. Tung, and Y. Tanimoto, “Effects of high magnetic field on the intramolecular exciplex fluorescence of chain-linked phenanthrene and dimethylaniline,” J. Phys. Chem. A 101(4), 407–411 (1997).
[CrossRef]

Ulrich, T.

U. E. Steiner and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena,” Chem. Rev. 89(1), 51–147 (1989).
[CrossRef]

Vellekoop, I. M.

I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
[CrossRef] [PubMed]

Wang, L. V.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Weller, A.

H. Staerk, W. Kuhnle, R. Treichel, and A. Weller, “Magnetic field dependence of intramolecular exciplex formation in polymethylene-linked A-D systems,” Chem. Phys. Lett. 118(1), 19–24 (1985).
[CrossRef]

A. Weller, H. Staerk, and R. Treichel, “Magnetic-field effects on geminate radical-pair recombination,” Faraday Discuss. Chem. Soc. 78, 271–278 (1984).
[CrossRef]

H. J. Werner, H. Staerk, and A. Weller, “Solvent, isotope, and magnetic-field effects in geminate recombination of radical ion-pairs,” J. Chem. Phys. 68(5), 2419–2426 (1978).
[CrossRef]

Werner, H. J.

H. J. Werner, H. Staerk, and A. Weller, “Solvent, isotope, and magnetic-field effects in geminate recombination of radical ion-pairs,” J. Chem. Phys. 68(5), 2419–2426 (1978).
[CrossRef]

H. J. Werner, Z. Schulten, and K. Schulten, “Theory of the magnetic field modulated geminate recombination of radical ion pairs in polar solvents: application to the pyrene–N, N-dimethylaniline system,” J. Chem. Phys. 67(2), 646 (1977).
[CrossRef]

Yang, C.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Chem. Phys. Lett. (4)

L. A. Margulis, I. V. Khudyakov, and V. A. Kuzmin, “Magnetic field effects on radical recombination in a cage and in the bulk of a viscous solvent,” Chem. Phys. Lett. 119(2-3), 244–250 (1985).
[CrossRef]

N. K. Petrov, A. I. Shushin, and E. L. Frankevich, “Solvent effect on magnetic field modulation of exciplex fluorescence in polar solutions,” Chem. Phys. Lett. 82(2), 339–343 (1981).
[CrossRef]

H. Staerk, W. Kuhnle, R. Treichel, and A. Weller, “Magnetic field dependence of intramolecular exciplex formation in polymethylene-linked A-D systems,” Chem. Phys. Lett. 118(1), 19–24 (1985).
[CrossRef]

Y. Tanimoto, N. Okada, and M. Itoh Kaoru, “Magnetic field effects on the fluorescence of intramolecular electron-donor-acceptor systems,” Chem. Phys. Lett. 136(1), 42–46 (1987).
[CrossRef]

Chem. Rev. (2)

K. Bhattacharyya and M. Chowdhury, “Environmental and magnetic field effects on exciplex and twisted charge transfer emission,” Chem. Rev. 93(1), 507–535 (1993).
[CrossRef]

U. E. Steiner and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena,” Chem. Rev. 89(1), 51–147 (1989).
[CrossRef]

Faraday Discuss. Chem. Soc. (1)

A. Weller, H. Staerk, and R. Treichel, “Magnetic-field effects on geminate radical-pair recombination,” Faraday Discuss. Chem. Soc. 78, 271–278 (1984).
[CrossRef]

J. Chem. Phys. (2)

H. J. Werner, H. Staerk, and A. Weller, “Solvent, isotope, and magnetic-field effects in geminate recombination of radical ion-pairs,” J. Chem. Phys. 68(5), 2419–2426 (1978).
[CrossRef]

H. J. Werner, Z. Schulten, and K. Schulten, “Theory of the magnetic field modulated geminate recombination of radical ion pairs in polar solvents: application to the pyrene–N, N-dimethylaniline system,” J. Chem. Phys. 67(2), 646 (1977).
[CrossRef]

J. Phys. Chem. A (1)

H. Cao, K. Miyata, T. Tamura, Y. Fujiwara, A. Katsuki, C. H. Tung, and Y. Tanimoto, “Effects of high magnetic field on the intramolecular exciplex fluorescence of chain-linked phenanthrene and dimethylaniline,” J. Phys. Chem. A 101(4), 407–411 (1997).
[CrossRef]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[CrossRef] [PubMed]

Nature (1)

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, “Chemical compass model of avian magnetoreception,” Nature 453(7193), 387–390 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245–1247 (2010).
[CrossRef] [PubMed]

Philos. Transact. A Math. Phys. Eng. Sci. (1)

C. R. Timmel and K. B. Henbest, “A study of spin chemistry in weak magnetic fields,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1825), 2573–2589 (2004).
[CrossRef] [PubMed]

Pramana (1)

D. N. Nath and M. Chowdhury, “Effect of variation of dielectric constant on the magnetic field modulation of exciplex luminescence,” Pramana 34(1), 51–66 (1990).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

N. J. Turro, Modern Molecular Photochemistry (University Science Books, 1991).

S. Nagakura, H. Hayashi, and T. Azumi, Dynamic Spin Chemistry: Magnetic Controls and Spin Dynamics of Chemical Reactions (Wiley-Kodansha, 1998).

Supplementary Material (3)

» Media 1: MOV (220 KB)     
» Media 2: MOV (88 KB)     
» Media 3: MOV (69 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 2
Fig. 2

Apparatus for magnetofluorescence imaging. (a) The sample is immersed in a solution of pyrene/DMA (yellow disk) and placed in an octupole magnet. UV illumination impinges from above and fluorescence is sent via 10 mm acrylic light guide to a photomultiplier (PMT). Bias coils dither the location of the magnetic null at 870 Hz for lock-in detection. A mechanical x-y stage scans the magnet assembly relative to the sample. (b) Simulation of the magnetic field strength due to the permanent magnets in the plane z = 0. (c) Predicted point spread function based on field profile from (b), and the MFE on fluorescence from Fig. 1(b). (d) (Media 2, Media 3) Direct optical imaging of the point spread function. The light guide and PMT were replaced by a CCD camera. The sample chamber was filled with pyrene/DMA and the exciplex fluorescence was imaged onto the camera. The octupole magnets were scanned across a 7 x 7 grid. The dark spots correspond to the locations of the null in the magnetic field. The point spread function has a FWHM of 0.94 mm.

Fig. 1
Fig. 1

Magnetic field effect on fluorescence of a solution of pyrene/dimethylaniline (DMA). (a) Top: Bloch spheres for two electron spins in the radical pair. Absorption of a photon induces electron transfer from DMA to pyrene, to generate a spin-correlated radical pair. The electrons start in a singlet state and each precesses around its local effective magnetic field, which has contributions from hyperfine interactions and an applied magnetic field. Bottom: schematic showing the magnetically active nuclei, each drawn as a classical magnetic dipole. The hyperfine fields combine to yield a random, approximately static effective magnetic field. (b) (Media 1) Fluorescence intensity as a function of external magnetic field. The MFE depends only on the magnitude of B, not its direction.

Fig. 3
Fig. 3

Imaging through a scattering medium. (a) Sample cell. A glass object to be imaged (top) is placed in a chamber with a solution of pyrene/DMA (middle). The bottom and top of the chamber are blocked by ground glass plates so the object is obscured (bottom). (b) Magnetofluorescence images of the sample hidden inside the chamber. The vectors represent the local gradient of the MFE, which is only large at the solution / object interface. The quiver plot shows the boundaries of the object in (a). Inset: projected shadow image. (c) Quiver plot showing the boundaries of a single glass rod. Inset: projected shadow image.

Fig. 4
Fig. 4

MFE for prompt and delayed fluorescence of pyrene/DMA in degassed THF/DMSO (82%:18%). The uncertainties in the measurements are from photon shot noise. Error bars are shown for the delayed fluorescence measurements, and are negligible for the prompt fluorescence measurements.

Metrics