Abstract

One of the main drawbacks of the swept source optical coherence tomography (SS-OCT) is its limited axial range. A novel interferometer configuration is proposed, equipped in each arm with an adjustable path length ring. By compensating the losses in the rings using semiconductor optical amplifiers, multiple paths A-scans can be obtained which when combined axially, can lead to an extremely long overall axial range. The effect of the re-circulation loops is equivalent with extending the coherence length of the swept source. In this way, the axial imaging range in SS-OCT can be pushed well beyond the limit imposed by the coherence length of the laser, to exceed in principle many centimeters.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Leitgeb, C. K. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2190 .
    [CrossRef] [PubMed]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  3. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 .
    [CrossRef] [PubMed]
  4. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-26-3598 .
    [CrossRef] [PubMed]
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2953 .
    [CrossRef] [PubMed]
  6. K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
    [CrossRef]
  7. J. J. Armstrong, M. S. Leigh, D. D. Sampson, J. H. Walsh, D. R. Hillman, and P. R. Eastwood, “Quantitative upper airway imaging with anatomic optical coherence tomography,” Am. J. Respir. Crit. Care Med. 173(2), 226–233 (2005).
    [CrossRef] [PubMed]
  8. J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
    [CrossRef] [PubMed]
  9. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
    [CrossRef]
  10. J. Zhang, W. Jung, J. S. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12(24), 6033–6039 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-24-6033 .
    [CrossRef] [PubMed]
  11. E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-583 .
    [CrossRef] [PubMed]
  12. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
    [CrossRef]
  13. A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14(4), 1487–1496 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1487 .
    [CrossRef] [PubMed]
  14. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-1-7 .
    [CrossRef] [PubMed]
  15. B. Hofer, B. Považay, A. Unterhuber, L. Wang, B. Hermann, S. Rey, G. Matz, and W. Drexler, “Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm,” Opt. Express 18(5), 4898–4919 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4898 .
    [CrossRef] [PubMed]
  16. D. Woods and A. Podoleanu, “Controlling the shape of Talbot bands’ visibility,” Opt. Express 16(13), 9654–9670 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9654 .
    [CrossRef] [PubMed]
  17. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8406 .
    [CrossRef] [PubMed]
  18. L. Neagu, A. Bradu, L. Ma, J. W. Bloor, and A. G. Podoleanu, “Multiple-depth en face optical coherence tomography using active recirculation loops,” Opt. Lett. 35(13), 2296–2298 (2010).
    [CrossRef] [PubMed]

2010 (2)

2009 (1)

2008 (3)

2006 (1)

2005 (4)

E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-583 .
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[CrossRef]

J. J. Armstrong, M. S. Leigh, D. D. Sampson, J. H. Walsh, D. R. Hillman, and P. R. Eastwood, “Quantitative upper airway imaging with anatomic optical coherence tomography,” Am. J. Respir. Crit. Care Med. 173(2), 226–233 (2005).
[CrossRef] [PubMed]

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (5)

2002 (1)

Aljasem, K.

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[CrossRef]

Armstrong, J. J.

J. J. Armstrong, M. S. Leigh, D. D. Sampson, J. H. Walsh, D. R. Hillman, and P. R. Eastwood, “Quantitative upper airway imaging with anatomic optical coherence tomography,” Am. J. Respir. Crit. Care Med. 173(2), 226–233 (2005).
[CrossRef] [PubMed]

Bachmann, A.

Bloor, J. W.

Bouma, B. E.

Bradu, A.

Cense, B.

Chalita, M. R.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

Chen, Z.

Choma, M. A.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[CrossRef]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 .
[CrossRef] [PubMed]

Davis, A. M.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[CrossRef]

de Boer, J.

de Boer, J. F.

Drexler, W.

Eastwood, P. R.

J. J. Armstrong, M. S. Leigh, D. D. Sampson, J. H. Walsh, D. R. Hillman, and P. R. Eastwood, “Quantitative upper airway imaging with anatomic optical coherence tomography,” Am. J. Respir. Crit. Care Med. 173(2), 226–233 (2005).
[CrossRef] [PubMed]

Fabritius, T.

Fercher, A.

Fercher, A. F.

Goldsmith, J. A.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

Götzinger, E.

Hermann, B.

Hillman, D. R.

J. J. Armstrong, M. S. Leigh, D. D. Sampson, J. H. Walsh, D. R. Hillman, and P. R. Eastwood, “Quantitative upper airway imaging with anatomic optical coherence tomography,” Am. J. Respir. Crit. Care Med. 173(2), 226–233 (2005).
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

Hofer, B.

Huang, D.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

Iftimia, N.

Izatt, J. A.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[CrossRef]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 .
[CrossRef] [PubMed]

Jung, W.

Kowalczyk, A.

Lasser, T.

Leigh, M. S.

J. J. Armstrong, M. S. Leigh, D. D. Sampson, J. H. Walsh, D. R. Hillman, and P. R. Eastwood, “Quantitative upper airway imaging with anatomic optical coherence tomography,” Am. J. Respir. Crit. Care Med. 173(2), 226–233 (2005).
[CrossRef] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Li, Y.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

Ma, L.

Makita, S.

Matz, G.

Neagu, L.

Nelson, J. S.

Park, B. H.

Patil, C. A.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

Pierce, M. C.

Pircher, M.

Podoleanu, A.

Podoleanu, A. G.

Považay, B.

Rey, S.

Rollins, A. M.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

Sampson, D. D.

J. J. Armstrong, M. S. Leigh, D. D. Sampson, J. H. Walsh, D. R. Hillman, and P. R. Eastwood, “Quantitative upper airway imaging with anatomic optical coherence tomography,” Am. J. Respir. Crit. Care Med. 173(2), 226–233 (2005).
[CrossRef] [PubMed]

Sarunic, M. V.

Seifert, A.

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[CrossRef]

Tearney, G. J.

Unterhuber, A.

Walsh, J. H.

J. J. Armstrong, M. S. Leigh, D. D. Sampson, J. H. Walsh, D. R. Hillman, and P. R. Eastwood, “Quantitative upper airway imaging with anatomic optical coherence tomography,” Am. J. Respir. Crit. Care Med. 173(2), 226–233 (2005).
[CrossRef] [PubMed]

Wang, L.

Werber, A.

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[CrossRef]

Westphal, V.

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

Wojtkowski, M.

Woods, D.

Yang, C.

Yasuno, Y.

Yun, S. H.

Zappe, H.

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[CrossRef]

Zhang, J.

Am. J. Respir. Crit. Care Med. (1)

J. J. Armstrong, M. S. Leigh, D. D. Sampson, J. H. Walsh, D. R. Hillman, and P. R. Eastwood, “Quantitative upper airway imaging with anatomic optical coherence tomography,” Am. J. Respir. Crit. Care Med. 173(2), 226–233 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[CrossRef]

Ophthalmology (1)

J. A. Goldsmith, Y. Li, M. R. Chalita, V. Westphal, C. A. Patil, A. M. Rollins, J. A. Izatt, and D. Huang, “Anterior chamber width measurement by high-speed optical coherence tomography,” Ophthalmology 112(2), 238–244 (2005).
[CrossRef] [PubMed]

Opt. Express (11)

J. Zhang, W. Jung, J. S. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12(24), 6033–6039 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-24-6033 .
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-583 .
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2190 .
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 .
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-26-3598 .
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2953 .
[CrossRef] [PubMed]

A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14(4), 1487–1496 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1487 .
[CrossRef] [PubMed]

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-1-7 .
[CrossRef] [PubMed]

B. Hofer, B. Považay, A. Unterhuber, L. Wang, B. Hermann, S. Rey, G. Matz, and W. Drexler, “Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm,” Opt. Express 18(5), 4898–4919 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4898 .
[CrossRef] [PubMed]

D. Woods and A. Podoleanu, “Controlling the shape of Talbot bands’ visibility,” Opt. Express 16(13), 9654–9670 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9654 .
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8406 .
[CrossRef] [PubMed]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 2
Fig. 2

FFT of the photo-detected signal for OPDR = OPD = 0. Each component represents the carrier n⋅∆f of an independent OCT channel.

Fig. 3
Fig. 3

Normalized visibility versus OPD, for (a): OPDR = 10 mm and (b): OPDR = 40 mm.

Fig. 4
Fig. 4

Long B-scan images obtained for the adjustments in Fig. 3b and ∆f = 500 kHz. The five sub-plots have been generated for different OPD values as determined by the axial positions of a flat mirror, corresponding to: (a) OPD = 4 mm (only the first order is present in the image, (b) OPD = 24 mm (both orders, 0 and 1 are present in the image), (c) OPD = 40 mm (only order 1 is in the image), (d) OPD = 64 mm (the first and the second orders are present in the image), (e) OPD = 80 mm (only order 2 is in the image). The horizontal axes at the top show the frequencies corresponding to the three channels, n = 0, 1, 2, centered around their respective carrier frequency values, 0, 500 kHz and 1 MHz, respectively. Each image is formed from 200 A-scans.

Fig. 5
Fig. 5

Visibility profiles vs. OPD, for order 0 and order 1 and for a situation where the two orders have been superposed by choosing the frequency carrier Δf = 180 kHz and OPDR = - 20 mm, to satisfy Eq. (6).

Fig. 1
Fig. 1

Anatomy of the multiple-depth SS-OCT system: DC, DC1,2, BC: 50:50 directional couplers, PC: polarization controllers, I1,2(a,b): optical isolators, SOA1,2: semiconductor optical amplifiers, AOFS1,2: acusto-optic frequency shifters, MO1-8: microscope objectives, TS: translation stages, L1: achromatic lens, BS: beam-splitter, PD1,2: photo-detectors, DA: differential amplifier, SXY: galvo-scanner.

Fig. 6
Fig. 6

B-scan images of the TiO2 based sample of thickness 4 mm. The horizontal size of the images is 27.62 mm depth, measured in air. The horizontal axis extends on the right up to 500 kHz. (a1) and (a2) correspond to OPD = 1 mm (the back surface of the sample was placed at OPD = 1 mm), then the length of the reference arm was altered by: 5 mm in (b1,2), 10 mm in (c1,2), 15 mm in (d1,2), 20 mm in (e1,2) and 25 mm in (f1,2). The images with subscript 1 correspond to the combined channel while those with subscript 2, to the fundamental channel.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F = C O P D ,
F = Δ k 2 π γ O P D = C O P D ,
F n = n Δ f + C ( O P D + n O P D R ) .
Δ F n = C ( O P D + n O P D R ) .
C O P D = n Δ f + C ( O P D + n O P D R ) ,
Δ f = C O P D R .

Metrics