Abstract

We show the annealing effect on silver and Erbium- doped tellurite glasses in the formation of nanoparticles (NPs) of silver, produced by the reduction of silver (Ag+→Ag0), aiming to an fluorescence enhancement. The absorption spectra show typical Localized Surface Plasmon Resonance (LSPR) band of Ag0 NP in addition to the distinctive absorption peaks of Er3+ ions. Both observations demonstrate that the photoluminescence enhancement is due to the coupling of dipoles formed by NPs with the Er3+ 4I13/24I15/2 transition. This plasmon energy transfer to the Er3+ ions was observed in the fluorescence spectrum with a blue-shift of the peaks.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad, Nanophotonics (Wiley, New York, 2004).
  2. C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
    [CrossRef] [PubMed]
  3. K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
    [CrossRef]
  4. T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys. 105(1), 013102 (2009).
    [CrossRef]
  5. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [CrossRef] [PubMed]
  6. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [CrossRef] [PubMed]
  7. O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
    [CrossRef]
  8. V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
    [CrossRef]
  9. V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
    [CrossRef]
  10. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
    [CrossRef] [PubMed]
  11. T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
    [CrossRef] [PubMed]
  12. Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15(4), 243–260 (2001).
    [CrossRef]
  13. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [CrossRef]
  14. F. Vallé, In Nanoscience: Nanomaterials and Nanochemistry, C. Dupas and M. Lahmani, Eds.; (Springer, Berlin, 2008), 197 pages.
  15. D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
    [CrossRef]
  16. H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
    [CrossRef] [PubMed]
  17. C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
    [CrossRef]
  18. F. Hache, D. Ricard, and C. J. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3(12), 1647–1655 (1986).
    [CrossRef]
  19. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
    [CrossRef] [PubMed]
  20. JCPDS Card File No. 4–0783.
  21. G. S. Ofelt, “Intensities of Crystal Spectra of Rare‐Earth Ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [CrossRef]
  22. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
    [CrossRef]

2009 (2)

T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys. 105(1), 013102 (2009).
[CrossRef]

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

2008 (2)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

2007 (2)

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

2006 (3)

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[CrossRef]

2004 (1)

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

2001 (2)

Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15(4), 243–260 (2001).
[CrossRef]

C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
[CrossRef]

2000 (1)

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[CrossRef]

1996 (1)

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

1992 (1)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[CrossRef] [PubMed]

1986 (1)

1985 (1)

O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of Crystal Spectra of Rare‐Earth Ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Aegerter, M. A.

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef] [PubMed]

Auzel, F.

Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15(4), 243–260 (2001).
[CrossRef]

O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[CrossRef]

Baida, H.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Barbosa, L. C.

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

Billaud, P.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef] [PubMed]

Brown, K. R.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[CrossRef]

Broyer, M.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Catunda, T.

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

Cesar, C. L.

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

Chillcce, E. F.

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

Christofilos, D.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
[CrossRef]

Chumanov, G.

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

Cottancin, E.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Crut, A.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

de Sá, G. F.

O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[CrossRef]

Del Fatti, N.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
[CrossRef]

Evanoff, D. D.

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

Florez, A.

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

Flytzanis, C. J.

Hache, F.

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Halas, N. J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef] [PubMed]

Hanada, T.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[CrossRef] [PubMed]

Huang, Y. D.

Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15(4), 243–260 (2001).
[CrossRef]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Karmakar, B.

T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys. 105(1), 013102 (2009).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef] [PubMed]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef] [PubMed]

Lermé, J.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Li, C.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

Lin, J.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

Liz-Marzán, L. M.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Maioli, P.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Malta, O. L.

O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[CrossRef]

Marhaba, S.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Mertens, H.

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[CrossRef]

Messaddeq, Y.

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

Mortier, M.

Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15(4), 243–260 (2001).
[CrossRef]

Natan, M. J.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[CrossRef]

Nordlander, P.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef] [PubMed]

Nunes, L. A. O.

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

Ofelt, G. S.

G. S. Ofelt, “Intensities of Crystal Spectra of Rare‐Earth Ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Ohyagi, T.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[CrossRef] [PubMed]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Pellarin, M.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Polman, A.

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[CrossRef]

Quan, Z.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

Ricard, D.

Rivera, V. A. G.

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

Rodriguez, E.

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Sánchez-Iglesias, A.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Santa-Cruz, P. O.

O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[CrossRef]

Soga, N.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[CrossRef] [PubMed]

Som, T.

T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys. 105(1), 013102 (2009).
[CrossRef]

Tanabe, S.

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[CrossRef] [PubMed]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef] [PubMed]

Valleé, F. J.

C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
[CrossRef]

Vallée, F.

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Voisin, C.

C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
[CrossRef]

Walter, D. G.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[CrossRef]

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef] [PubMed]

White, R. L.

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

Yang, J.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

Yang, P.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

ACS Nano (1)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[CrossRef]

Chem. Mater. (1)

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[CrossRef]

Inorg. Chem. (1)

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodispersive β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er and Yb/Tm) hexagonal microprism crystals: Hydrothermal synthesis and luminescent properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

T. Som and B. Karmakar, “Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+: Ag-antimony glass nanocomposites,” J. Appl. Phys. 105(1), 013102 (2009).
[CrossRef]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of Crystal Spectra of Rare‐Earth Ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

J. Lumin. (1)

O. L. Malta, P. O. Santa-Cruz, G. F. de Sá, and F. Auzel, “Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials,” J. Lumin. 33(3), 261–272 (1985).
[CrossRef]

J. Non-Cryst. Solids (2)

V. A. G. Rivera, E. Rodriguez, E. F. Chillcce, C. L. Cesar, and L. C. Barbosa, “Waveguide produced by fiber on glass method using Er3+-doped tellurite glass,” J. Non-Cryst. Solids 353(4), 339–343 (2007).
[CrossRef]

V. A. G. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, “Planar waveguides by ion exchange in Er3+-doped tellurite glass,” J. Non-Cryst. Solids 352(5), 363–367 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the Distance Dependence of the Local Electromagnetic Field from Silver Nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

Nano Lett. (1)

H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles,” Nano Lett. 9(10), 3463–3469 (2009).
[CrossRef] [PubMed]

Nature (1)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Opt. Mater. (1)

Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15(4), 243–260 (2001).
[CrossRef]

Phys. Chem. B (1)

C. Voisin, N. Del Fatti, D. Christofilos, and F. J. Valleé, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” Phys. Chem. B 105(12), 2264–2280 (2001).
[CrossRef]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B Condens. Matter 46(6), 3305–3310 (1992).
[CrossRef] [PubMed]

T. Catunda, L. A. O. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Other (3)

F. Vallé, In Nanoscience: Nanomaterials and Nanochemistry, C. Dupas and M. Lahmani, Eds.; (Springer, Berlin, 2008), 197 pages.

P. N. Prasad, Nanophotonics (Wiley, New York, 2004).

JCPDS Card File No. 4–0783.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics