Abstract

A Bessel-like beam was generated in a novel all-fiber integrated structure. A concentric ring intensity pattern was achieved by the multimode interference along the coreless silica fiber, which was then focused by the integrated micro-lens to result in a Bessel-like beam. The average beam diameter of 7.5 μm maintained over 500 μm axial length for a continuous wave Yb-doped fiber laser input oscillating at the wavelength of 1.08 μm. The generated beam was successfully applied to two-dimension optical trapping and longitudinal transport of multiple dielectric particles confirming its unique non-diffracting and self-reconstructing nature. Physical principle of operation, fabrication, and experimental results are discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Scott, Holswade, and F. M. Dickey, Laser beam shaping (CRC, 2005).
  2. C. A. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a nondiffracting light beam,” Am. J. Phys. 67(10), 912–915 (1999).
    [CrossRef]
  3. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
    [CrossRef]
  4. J. Arlt, V. Garces-chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
    [CrossRef]
  5. K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
    [CrossRef] [PubMed]
  6. S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picoseconds pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
    [CrossRef]
  7. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [CrossRef] [PubMed]
  8. Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, “Experimental investigation of Bessel beam characteristics,” Appl. Opt. 31(15), 2708–2713 (1992).
    [CrossRef] [PubMed]
  9. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6(1), 150–152 (1989).
    [CrossRef]
  10. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33(18), 2155–2157 (2008).
    [CrossRef] [PubMed]
  11. J. K. Kim, J. Kim, Y. Jung, W. Ha, Y. S. Jeong, S. Lee, A. Tünnermann, and K. Oh, “Compact all-fiber Bessel beam generator based on hollow optical fiber combined with a hybrid polymer fiber lens,” Opt. Lett. 34(19), 2973–2975 (2009).
    [CrossRef] [PubMed]
  12. J. F. Michel, Digonnet, Rare-earth-doped fiber lasers and amplifiers (Marcel Dekker, 2001).
  13. S. K. Oh, Choi, Y. Jung, and J. W. Lee, “Novel Hollow Optical Fibers and Their Applications in Photonic Devices for Optical Communications,” J. Lightwave Technol. 23(2), 524–532 (2005).
    [CrossRef]
  14. S. Monk, J. Arlt, and M. J. Padgett, “The generation of Bessel beams at millimeter-wave frequencies by use of an axicon,” Opt. Commun. 170(4-6), 213–215 (1999).
    [CrossRef]
  15. X. Zhu, A. Schülzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18(7), 7506–7520 (2010).
    [CrossRef] [PubMed]
  16. X. Tsampoula, K. Taguchi, T. Čižmár, V. Garces-Chavez, N. Ma, S. Mohanty, K. Mohanty, F. Guun-Moore, and K. Dholakia, “Fiber based cellular transfection,” Opt. Express 16(21), 17007–17013 (2008).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (3)

2005 (2)

2004 (1)

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picoseconds pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[CrossRef]

2001 (1)

J. Arlt, V. Garces-chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[CrossRef]

1999 (2)

C. A. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a nondiffracting light beam,” Am. J. Phys. 67(10), 912–915 (1999).
[CrossRef]

S. Monk, J. Arlt, and M. J. Padgett, “The generation of Bessel beams at millimeter-wave frequencies by use of an axicon,” Opt. Commun. 170(4-6), 213–215 (1999).
[CrossRef]

1992 (1)

1989 (1)

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Arlt, J.

J. Arlt, V. Garces-chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[CrossRef]

C. A. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a nondiffracting light beam,” Am. J. Phys. 67(10), 912–915 (1999).
[CrossRef]

S. Monk, J. Arlt, and M. J. Padgett, “The generation of Bessel beams at millimeter-wave frequencies by use of an axicon,” Opt. Commun. 170(4-6), 213–215 (1999).
[CrossRef]

Berns, M. W.

Brown, D. L.

Choi,

Cižmár, T.

Dholakia, K.

X. Tsampoula, K. Taguchi, T. Čižmár, V. Garces-Chavez, N. Ma, S. Mohanty, K. Mohanty, F. Guun-Moore, and K. Dholakia, “Fiber based cellular transfection,” Opt. Express 16(21), 17007–17013 (2008).
[CrossRef] [PubMed]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[CrossRef]

J. Arlt, V. Garces-chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[CrossRef]

C. A. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a nondiffracting light beam,” Am. J. Phys. 67(10), 912–915 (1999).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Eberly, J. H.

Garces-Chavez, V.

X. Tsampoula, K. Taguchi, T. Čižmár, V. Garces-Chavez, N. Ma, S. Mohanty, K. Mohanty, F. Guun-Moore, and K. Dholakia, “Fiber based cellular transfection,” Opt. Express 16(21), 17007–17013 (2008).
[CrossRef] [PubMed]

J. Arlt, V. Garces-chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[CrossRef]

Guun-Moore, F.

Ha, W.

Huang, H.

Indebetouw, G.

Jeong, Y. S.

Jung, Y.

Juodkazis, S.

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picoseconds pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[CrossRef]

K. Oh, S.

Kim, J.

Kim, J. K.

Lee, J. W.

Lee, K. S.

Lee, S.

Li, H.

Lin, Y.

Ma, N.

Maksimov, I.

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picoseconds pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[CrossRef]

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[CrossRef]

McQueen, C. A.

C. A. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a nondiffracting light beam,” Am. J. Phys. 67(10), 912–915 (1999).
[CrossRef]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Misawa, H.

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picoseconds pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[CrossRef]

Mohanty, K.

Mohanty, K. S.

Mohanty, S.

Mohanty, S. K.

Moloney, J. V.

Monk, S.

S. Monk, J. Arlt, and M. J. Padgett, “The generation of Bessel beams at millimeter-wave frequencies by use of an axicon,” Opt. Commun. 170(4-6), 213–215 (1999).
[CrossRef]

Oh, K.

Padgett, M. J.

S. Monk, J. Arlt, and M. J. Padgett, “The generation of Bessel beams at millimeter-wave frequencies by use of an axicon,” Opt. Commun. 170(4-6), 213–215 (1999).
[CrossRef]

Peyghambarian, N.

Rolland, J. P.

Schülzgen, A.

Seka, W.

Sibbett, W.

J. Arlt, V. Garces-chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[CrossRef]

Taguchi, K.

Tsampoula, X.

Tünnermann, A.

Wei, H.

Y. Jung,

Zhu, X.

Am. J. Phys. (1)

C. A. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a nondiffracting light beam,” Am. J. Phys. 67(10), 912–915 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Juodkazis, H. Misawa, and I. Maksimov, “Thermal accumulation effect in three-dimensional recording by picoseconds pulses,” Appl. Phys. Lett. 85(22), 5239–5241 (2004).
[CrossRef]

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

J. Arlt, V. Garces-chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[CrossRef]

S. Monk, J. Arlt, and M. J. Padgett, “The generation of Bessel beams at millimeter-wave frequencies by use of an axicon,” Opt. Commun. 170(4-6), 213–215 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Other (2)

C. Scott, Holswade, and F. M. Dickey, Laser beam shaping (CRC, 2005).

J. F. Michel, Digonnet, Rare-earth-doped fiber lasers and amplifiers (Marcel Dekker, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the principle of Bessel-like beam generation in the proposed all-fiber BBG device by multi-mode interference. (b) Photographic image of the fabricated all-fiber BBG and its geometrical parameters.

Fig. 2
Fig. 2

Beam Propagation Method (BPM) simulation results for the proposed devices with various CSF lengths. The upper row shows the longitudinal intensity distribution along the z-axis, and the lower row shows the maximum intensity distribution measured at 300 μm apart from fiber facet in the transverse x-y plane. The SMF end facet is at z=100 μm and the CSF and fiber lens (rlens =82 μm) are overlaid in white dashed lines. The CSF lengths are (a) l c=0, (b) 400 μm, (c) 1600 μm, (d) 2400 μm.

Fig. 3
Fig. 3

Intensity distributions for the beam from the fabricated all-fiber BBG device, measured by CCD camera. The CSF length was l c=1600 μm and the axial position was (a) z=150 μm, (b) 450 μm, (c) 550 μm.

Fig. 4
Fig. 4

(a) The central peak intensity profile along the longitudinal direction for the propose device (red line) and vertically cleaved SMF (black line). The right axis is the FWHM diameter, dFWHM . Red squares are for the proposed device and black circles are for SMF. (b) longitudinal intensity distribution for the proposed devices with various CSF lengths.

Fig. 5
Fig. 5

(a) The image of Bessel-like beam propagation out of the proposed device in a colloidal solution. (b) Optical trapping of multiple dielectric particles(marked as white arrows) and subsequent optical transport along the axial direction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( 2 + k 2 ) Φ ( x , y , z ; κ ) = 0.
Φ B ( x , y , z ; κ ) = J 0 ( α ρ ) e i β z .
E o u t ( r , φ , l ) = m = 1 C m e m ( r , φ ) e i β m l

Metrics