Abstract

The array of pointed-shape apertures microfabricated in thin-film aluminum on a thick silicon substrate was designed to maximize the transmission efficiency at desired frequency. The resulted characteristics were over 100% optical transmission (relative to substrate) at narrow band-pass resonance and polarization-independent transmission strength and band-pass shape on filter rotation angle.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
    [CrossRef]
  3. W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43(1), 1–18 (2008) (and references therein).
    [CrossRef]
  4. D. Dragoman and M. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008) (and references therein).
    [CrossRef]
  5. F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, “Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals,” Opt. Express 15(22), 14804–14809 (2007).
    [CrossRef] [PubMed]
  6. X. Wang, Y. Cui, D. Hu, W. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282(24), 4683–4687 (2009).
    [CrossRef]
  7. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30(10), 1210–1212 (2005).
    [CrossRef] [PubMed]
  8. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
    [CrossRef] [PubMed]
  9. S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
    [CrossRef]
  10. Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
    [CrossRef]
  11. F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Appl. Phys. Lett. 96(2), 021106 (2010).
    [CrossRef]
  12. H. Cao and A. Nahata, “Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures,” Opt. Express 12(16), 3664–3672 (2004).
    [CrossRef] [PubMed]
  13. M. Akazawa, Y. Yamazaki, and E. Sano, “Terahertz transmission property of a thin metal hole-array filter,” Jpn. J. Appl. Phys. 44(49), L1481–L1483 (2005).
    [CrossRef]
  14. E. Kato, K. Suizu, and K. Kawase, “Strong resonance and terahertz wave transmission enhancement of low-porosity metal hole array with bow-tie-shaped apertures,” Appl. Phys. Express 2(12), 122302 (2009).
    [CrossRef]
  15. D. S. Bulgarevich, M. Watanabe, and M. Shiwa, Japan Patent Pending 09-MS-145 (2010).
  16. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
    [CrossRef]
  17. T. H. Isaac, W. L. Barnes, and E. Hendry, “Surface-mode lifetime and the terahertz transmission of subwavelength hole arrays,” Phys. Rev. 80(11), 115423 (2009).
    [CrossRef]
  18. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
    [CrossRef]
  19. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  20. V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
    [CrossRef]
  21. C. Genet, M. P. van Exter, and J. P. Woerdman, “Huygens description of resonance phenomena in subwavelength hole arrays,” J. Opt. Soc. Am. A 22(5), 998–1002 (2005).
    [CrossRef]
  22. J. I. Gersten, “The effect of surface roughness on surface enhanced Raman scattering,” J. Chem. Phys. 72(10), 5779–5780 (1980).
    [CrossRef]
  23. J. I. Gersten, “Rayleigh, Mie, and Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 72(10), 5780–5781 (1980).
    [CrossRef]
  24. H. Liang, S. Ruan, M. Zhang, and H. Su, “Nanofocusing of terahertz wave on conical metal wire waveguides,” Opt. Commun. 283(2), 262–264 (2010).
    [CrossRef]
  25. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [CrossRef] [PubMed]
  26. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
    [CrossRef]
  27. J. Bravo-Abad, L. Martín-Moreno, F. J. García-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76(24), 241102 (2007).
    [CrossRef]
  28. T. Tanaka, M. Akazawa, and E. Sano, “Terahertz wave filter from cascaded thin-metal-film meshes with a triangular array of hexagonal holes,” Jpn. J. Appl. Phys. 43(No. 2B), L287–L289 (2004).
    [CrossRef]
  29. O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
    [CrossRef]
  30. J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q.-H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102 (2009).
    [CrossRef]
  31. K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
    [CrossRef]
  32. E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
    [CrossRef]
  33. S. M. V. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18(7), 7369–7375 (2010).
    [CrossRef] [PubMed]
  34. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Nonreciprocal reflection of a subwavelength hole array,” Opt. Lett. 28(20), 1906–1908 (2003).
    [CrossRef] [PubMed]
  35. D. Qu and D. Grischkowsky, “Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays,” Phys. Rev. Lett. 93(19), 196804 (2004).
    [CrossRef] [PubMed]

2010

F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Appl. Phys. Lett. 96(2), 021106 (2010).
[CrossRef]

H. Liang, S. Ruan, M. Zhang, and H. Su, “Nanofocusing of terahertz wave on conical metal wire waveguides,” Opt. Commun. 283(2), 262–264 (2010).
[CrossRef]

S. M. V. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18(7), 7369–7375 (2010).
[CrossRef] [PubMed]

2009

O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
[CrossRef]

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q.-H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102 (2009).
[CrossRef]

X. Wang, Y. Cui, D. Hu, W. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282(24), 4683–4687 (2009).
[CrossRef]

E. Kato, K. Suizu, and K. Kawase, “Strong resonance and terahertz wave transmission enhancement of low-porosity metal hole array with bow-tie-shaped apertures,” Appl. Phys. Express 2(12), 122302 (2009).
[CrossRef]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Surface-mode lifetime and the terahertz transmission of subwavelength hole arrays,” Phys. Rev. 80(11), 115423 (2009).
[CrossRef]

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[CrossRef]

2008

W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43(1), 1–18 (2008) (and references therein).
[CrossRef]

D. Dragoman and M. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008) (and references therein).
[CrossRef]

2007

J. Bravo-Abad, L. Martín-Moreno, F. J. García-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76(24), 241102 (2007).
[CrossRef]

F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, “Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals,” Opt. Express 15(22), 14804–14809 (2007).
[CrossRef] [PubMed]

2006

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[CrossRef] [PubMed]

2005

M. Akazawa, Y. Yamazaki, and E. Sano, “Terahertz transmission property of a thin metal hole-array filter,” Jpn. J. Appl. Phys. 44(49), L1481–L1483 (2005).
[CrossRef]

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
[CrossRef]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Huygens description of resonance phenomena in subwavelength hole arrays,” J. Opt. Soc. Am. A 22(5), 998–1002 (2005).
[CrossRef]

M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30(10), 1210–1212 (2005).
[CrossRef] [PubMed]

2004

D. Qu and D. Grischkowsky, “Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays,” Phys. Rev. Lett. 93(19), 196804 (2004).
[CrossRef] [PubMed]

H. Cao and A. Nahata, “Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures,” Opt. Express 12(16), 3664–3672 (2004).
[CrossRef] [PubMed]

T. Tanaka, M. Akazawa, and E. Sano, “Terahertz wave filter from cascaded thin-metal-film meshes with a triangular array of hexagonal holes,” Jpn. J. Appl. Phys. 43(No. 2B), L287–L289 (2004).
[CrossRef]

2003

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Nonreciprocal reflection of a subwavelength hole array,” Opt. Lett. 28(20), 1906–1908 (2003).
[CrossRef] [PubMed]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1980

J. I. Gersten, “The effect of surface roughness on surface enhanced Raman scattering,” J. Chem. Phys. 72(10), 5779–5780 (1980).
[CrossRef]

J. I. Gersten, “Rayleigh, Mie, and Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 72(10), 5780–5781 (1980).
[CrossRef]

1944

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Akazawa, M.

M. Akazawa, Y. Yamazaki, and E. Sano, “Terahertz transmission property of a thin metal hole-array filter,” Jpn. J. Appl. Phys. 44(49), L1481–L1483 (2005).
[CrossRef]

M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30(10), 1210–1212 (2005).
[CrossRef] [PubMed]

T. Tanaka, M. Akazawa, and E. Sano, “Terahertz wave filter from cascaded thin-metal-film meshes with a triangular array of hexagonal holes,” Jpn. J. Appl. Phys. 43(No. 2B), L287–L289 (2004).
[CrossRef]

Altewischer, E.

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[CrossRef] [PubMed]

Barnes, W. L.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Surface-mode lifetime and the terahertz transmission of subwavelength hole arrays,” Phys. Rev. 80(11), 115423 (2009).
[CrossRef]

Beigang, R.

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Bolivar, P. H.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

Bravo-Abad, J.

J. Bravo-Abad, L. Martín-Moreno, F. J. García-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76(24), 241102 (2007).
[CrossRef]

Cao, H.

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Cui, Y.

X. Wang, Y. Cui, D. Hu, W. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282(24), 4683–4687 (2009).
[CrossRef]

Dragoman, D.

D. Dragoman and M. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008) (and references therein).
[CrossRef]

Dragoman, M.

D. Dragoman and M. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008) (and references therein).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

García-Vidal, F. J.

J. Bravo-Abad, L. Martín-Moreno, F. J. García-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76(24), 241102 (2007).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[CrossRef] [PubMed]

Genet, C.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Huygens description of resonance phenomena in subwavelength hole arrays,” J. Opt. Soc. Am. A 22(5), 998–1002 (2005).
[CrossRef]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

Gersten, J. I.

J. I. Gersten, “The effect of surface roughness on surface enhanced Raman scattering,” J. Chem. Phys. 72(10), 5779–5780 (1980).
[CrossRef]

J. I. Gersten, “Rayleigh, Mie, and Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 72(10), 5780–5781 (1980).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gómez Rivas, J.

J. Bravo-Abad, L. Martín-Moreno, F. J. García-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76(24), 241102 (2007).
[CrossRef]

Grischkowsky, D.

D. Qu and D. Grischkowsky, “Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays,” Phys. Rev. Lett. 93(19), 196804 (2004).
[CrossRef] [PubMed]

Gu, J.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[CrossRef]

Han, J.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[CrossRef]

Hangyo, M.

Hayashi, S.

Hendry, E.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Surface-mode lifetime and the terahertz transmission of subwavelength hole arrays,” Phys. Rev. 80(11), 115423 (2009).
[CrossRef]

J. Bravo-Abad, L. Martín-Moreno, F. J. García-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76(24), 241102 (2007).
[CrossRef]

Hu, D.

X. Wang, Y. Cui, D. Hu, W. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282(24), 4683–4687 (2009).
[CrossRef]

Ikari, T.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

Isaac, T. H.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Surface-mode lifetime and the terahertz transmission of subwavelength hole arrays,” Phys. Rev. 80(11), 115423 (2009).
[CrossRef]

Ishihara, K.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

Ito, H.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

Jin, E. X.

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[CrossRef]

Kang, J. H.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q.-H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102 (2009).
[CrossRef]

Kato, E.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

E. Kato, K. Suizu, and K. Kawase, “Strong resonance and terahertz wave transmission enhancement of low-porosity metal hole array with bow-tie-shaped apertures,” Appl. Phys. Express 2(12), 122302 (2009).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Kawase, K.

E. Kato, K. Suizu, and K. Kawase, “Strong resonance and terahertz wave transmission enhancement of low-porosity metal hole array with bow-tie-shaped apertures,” Appl. Phys. Express 2(12), 122302 (2009).
[CrossRef]

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Kim, D. S.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q.-H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102 (2009).
[CrossRef]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Kinzel, E. C.

Kurz, H.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

Lee, J. W.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q.-H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102 (2009).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, Y.

Liang, H.

H. Liang, S. Ruan, M. Zhang, and H. Su, “Nanofocusing of terahertz wave on conical metal wire waveguides,” Opt. Commun. 283(2), 262–264 (2010).
[CrossRef]

Lomakin, V.

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
[CrossRef]

Lu, X.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[CrossRef]

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[CrossRef] [PubMed]

Martín-Moreno, L.

J. Bravo-Abad, L. Martín-Moreno, F. J. García-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76(24), 241102 (2007).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[CrossRef] [PubMed]

Michielssen, E.

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
[CrossRef]

Minamide, H.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

Miyamaru, F.

Nahata, A.

Nakagomi, Y.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

Ogawa, Y.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Ohashi, K.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

Otani, C.

Park, Q.-H.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q.-H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102 (2009).
[CrossRef]

Paul, O.

Qu, D.

D. Qu and D. Grischkowsky, “Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays,” Phys. Rev. Lett. 93(19), 196804 (2004).
[CrossRef] [PubMed]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Rahm, M.

Rivas, J. G.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

Ruan, S.

H. Liang, S. Ruan, M. Zhang, and H. Su, “Nanofocusing of terahertz wave on conical metal wire waveguides,” Opt. Commun. 283(2), 262–264 (2010).
[CrossRef]

Sano, E.

M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30(10), 1210–1212 (2005).
[CrossRef] [PubMed]

M. Akazawa, Y. Yamazaki, and E. Sano, “Terahertz transmission property of a thin metal hole-array filter,” Jpn. J. Appl. Phys. 44(49), L1481–L1483 (2005).
[CrossRef]

T. Tanaka, M. Akazawa, and E. Sano, “Terahertz wave filter from cascaded thin-metal-film meshes with a triangular array of hexagonal holes,” Jpn. J. Appl. Phys. 43(No. 2B), L287–L289 (2004).
[CrossRef]

Sasagawa, Y.

F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Appl. Phys. Lett. 96(2), 021106 (2010).
[CrossRef]

Schotsch, C.

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

Seo, M. A.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q.-H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102 (2009).
[CrossRef]

Shikata, J.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

Su, H.

H. Liang, S. Ruan, M. Zhang, and H. Su, “Nanofocusing of terahertz wave on conical metal wire waveguides,” Opt. Commun. 283(2), 262–264 (2010).
[CrossRef]

Suizu, K.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

E. Kato, K. Suizu, and K. Kawase, “Strong resonance and terahertz wave transmission enhancement of low-porosity metal hole array with bow-tie-shaped apertures,” Appl. Phys. Express 2(12), 122302 (2009).
[CrossRef]

Sun, W.

X. Wang, Y. Cui, D. Hu, W. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282(24), 4683–4687 (2009).
[CrossRef]

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Suzuki, T.

Takeda, M. W.

F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Appl. Phys. Lett. 96(2), 021106 (2010).
[CrossRef]

F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, “Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals,” Opt. Express 15(22), 14804–14809 (2007).
[CrossRef] [PubMed]

Tanaka, M.

Tanaka, T.

M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30(10), 1210–1212 (2005).
[CrossRef] [PubMed]

T. Tanaka, M. Akazawa, and E. Sano, “Terahertz wave filter from cascaded thin-metal-film meshes with a triangular array of hexagonal holes,” Jpn. J. Appl. Phys. 43(No. 2B), L287–L289 (2004).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tian, Z.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[CrossRef]

Uppuluri, S. M. V.

van Exter, M. P.

Wang, X.

X. Wang, Y. Cui, D. Hu, W. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282(24), 4683–4687 (2009).
[CrossRef]

Woerdman, J. P.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Xing, Q.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[CrossRef]

Xu, X.

S. M. V. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18(7), 7369–7375 (2010).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[CrossRef]

Yamazaki, Y.

M. Akazawa, Y. Yamazaki, and E. Sano, “Terahertz transmission property of a thin metal hole-array filter,” Jpn. J. Appl. Phys. 44(49), L1481–L1483 (2005).
[CrossRef]

Ye, J. S.

X. Wang, Y. Cui, D. Hu, W. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282(24), 4683–4687 (2009).
[CrossRef]

Yokoyama, H.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

Yoshida, H.

Yoshida, S.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

Zhang, M.

H. Liang, S. Ruan, M. Zhang, and H. Su, “Nanofocusing of terahertz wave on conical metal wire waveguides,” Opt. Commun. 283(2), 262–264 (2010).
[CrossRef]

Zhang, W.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[CrossRef]

W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43(1), 1–18 (2008) (and references therein).
[CrossRef]

Zhang, Y.

X. Wang, Y. Cui, D. Hu, W. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282(24), 4683–4687 (2009).
[CrossRef]

Appl. Phys. B

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[CrossRef]

Appl. Phys. Express

E. Kato, K. Suizu, and K. Kawase, “Strong resonance and terahertz wave transmission enhancement of low-porosity metal hole array with bow-tie-shaped apertures,” Appl. Phys. Express 2(12), 122302 (2009).
[CrossRef]

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

Appl. Phys. Lett.

F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Appl. Phys. Lett. 96(2), 021106 (2010).
[CrossRef]

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q.-H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102 (2009).
[CrossRef]

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

Chem. Phys. Lett.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009).
[CrossRef]

Eur. Phys. J. Appl. Phys.

W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43(1), 1–18 (2008) (and references therein).
[CrossRef]

J. Appl. Phys.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

J. Chem. Phys.

J. I. Gersten, “The effect of surface roughness on surface enhanced Raman scattering,” J. Chem. Phys. 72(10), 5779–5780 (1980).
[CrossRef]

J. I. Gersten, “Rayleigh, Mie, and Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 72(10), 5780–5781 (1980).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

T. Tanaka, M. Akazawa, and E. Sano, “Terahertz wave filter from cascaded thin-metal-film meshes with a triangular array of hexagonal holes,” Jpn. J. Appl. Phys. 43(No. 2B), L287–L289 (2004).
[CrossRef]

M. Akazawa, Y. Yamazaki, and E. Sano, “Terahertz transmission property of a thin metal hole-array filter,” Jpn. J. Appl. Phys. 44(49), L1481–L1483 (2005).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun.

H. Liang, S. Ruan, M. Zhang, and H. Su, “Nanofocusing of terahertz wave on conical metal wire waveguides,” Opt. Commun. 283(2), 262–264 (2010).
[CrossRef]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[CrossRef]

X. Wang, Y. Cui, D. Hu, W. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282(24), 4683–4687 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Surface-mode lifetime and the terahertz transmission of subwavelength hole arrays,” Phys. Rev. 80(11), 115423 (2009).
[CrossRef]

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Phys. Rev. B

J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[CrossRef]

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005).
[CrossRef]

J. Bravo-Abad, L. Martín-Moreno, F. J. García-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76(24), 241102 (2007).
[CrossRef]

Phys. Rev. Lett.

D. Qu and D. Grischkowsky, “Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays,” Phys. Rev. Lett. 93(19), 196804 (2004).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[CrossRef] [PubMed]

Prog. Quantum Electron.

D. Dragoman and M. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008) (and references therein).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

D. S. Bulgarevich, M. Watanabe, and M. Shiwa, Japan Patent Pending 09-MS-145 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme (a) and actual photos (b) and (c) of the Al aperture array on Si substrate.

Fig. 2
Fig. 2

(a) The THz transmission spectrum of the array band-pass filter, Si substrate, and THz source in air; (b) Transmission across the array (see the red line on insert) at resonance (0.81 THz) and nonresonance (1.85 THz) frequencies. The insert is the THz transmission image of the array at 0.81 THz in air.

Fig. 3
Fig. 3

Terahertz wave forms measured in vacuum at different illumination conditions (see schemes on insert) and normalized to unit intensity and time origin for the first transmission peak.

Fig. 4
Fig. 4

Transmission and reflection THz spectra of the array and substrate in vacuum at different illumination sides and incidence angles (see schemes on inserts): (a), (e), (f), and (g) are transmission spectra of the Si substrate and array; (b), (c), and (d) are reflection spectra from Al mirror and array. The reference spectra in corresponding optical alignments were THz source transmission or reflection from Au mirror for (a), (e), and (g) or (b), (c), and (d), respectively. The intensity, I, (f) and transmission (g) spectra were obtained from FFT of the same waveform, but for different time domains: (f) for 40-553 ps and (g) for 0-553 ps time intervals. Spectra are vertically shifted on indicated % for clarity.

Metrics