Abstract

Patterned metal films have been shown to possess unique optical properties resulting from the excitation of surface plasmon polaritons at the patterned metal surface. Here we demonstrate spectrally selective thermal emission from patterned steel substrates. The materials and processes used in this work were chosen for their potential scalability to large-area and low cost production of metal films with distinct and designable thermal signatures. The samples studied were characterized by reflection and emission spectroscopy, and a factor of 2.6 emission enhancement is demonstrated for the design wavelength. These results are compared to numerical simulations.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
    [CrossRef]
  2. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
    [CrossRef]
  3. S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
    [CrossRef]
  4. S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
    [CrossRef]
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  6. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
    [CrossRef] [PubMed]
  7. J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009).
    [CrossRef]
  8. D. Maystre and M. C. Hutley, “The total absorption of light by a diffractive grating,” Opt. Commun. 168, 431 (1976).
  9. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
    [CrossRef]
  10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  11. K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface Eenhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  12. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  13. H. Räther, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  14. J. J. Greffet and M. Nieto-Vesperinas, “Field theory for the generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchoff’ law,” J. Opt. Soc. Am. A 15(10), 2735 (1998).
    [CrossRef]
  15. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986) (Not metal.).
    [CrossRef]
  16. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
    [CrossRef]
  17. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [CrossRef] [PubMed]
  18. F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16(8), 5305–5313 (2008).
    [CrossRef] [PubMed]
  19. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
    [CrossRef]
  20. R. Carminati and J. Greffet, “Near Field Effects in Spatial Coherence of Thermal Sources,” Phys. Rev. Lett. 82(8), 1660–1663 (1999).
    [CrossRef]
  21. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
    [CrossRef]
  22. H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
    [CrossRef]
  23. K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
    [CrossRef]
  24. H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
    [CrossRef]
  25. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  26. W. L. Wolfe, and G. J. Zissis, The Infrared Handbook, revised edition (Environmental Research Institute of Michigan, 1989).
  27. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
    [CrossRef] [PubMed]
  28. E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
    [CrossRef]
  29. A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films 497(1-2), 315–320 (2006).
    [CrossRef]

2010

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

2009

J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009).
[CrossRef]

2008

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16(8), 5305–5313 (2008).
[CrossRef] [PubMed]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
[CrossRef]

2006

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films 497(1-2), 315–320 (2006).
[CrossRef]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
[CrossRef]

2005

2004

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

2003

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

2002

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

1999

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[CrossRef]

R. Carminati and J. Greffet, “Near Field Effects in Spatial Coherence of Thermal Sources,” Phys. Rev. Lett. 82(8), 1660–1663 (1999).
[CrossRef]

1998

J. J. Greffet and M. Nieto-Vesperinas, “Field theory for the generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchoff’ law,” J. Opt. Soc. Am. A 15(10), 2735 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1997

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface Eenhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

1986

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986) (Not metal.).
[CrossRef]

1983

1976

D. Maystre and M. C. Hutley, “The total absorption of light by a diffractive grating,” Opt. Commun. 168, 431 (1976).

Alexander, R. W.

Andrews, S. R.

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
[CrossRef]

Arnold, C.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Biswas, R.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Boucaud, P.

E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
[CrossRef]

Braive, R.

E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
[CrossRef]

Carminati, R.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

R. Carminati and J. Greffet, “Near Field Effects in Spatial Coherence of Thermal Sources,” Phys. Rev. Lett. 82(8), 1660–1663 (1999).
[CrossRef]

Checoury, X.

E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
[CrossRef]

Chen, Y.

F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16(8), 5305–5313 (2008).
[CrossRef] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Coe, J. V.

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface Eenhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Ebbesen, T. W.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

El-Kady, I.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface Eenhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Ferrell, T. L.

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films 497(1-2), 315–320 (2006).
[CrossRef]

Fishman, G.

E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
[CrossRef]

Fleming, J. G.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Fujimura, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Gebhart, B.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986) (Not metal.).
[CrossRef]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Greffet, J.

R. Carminati and J. Greffet, “Near Field Effects in Spatial Coherence of Thermal Sources,” Phys. Rev. Lett. 82(8), 1660–1663 (1999).
[CrossRef]

Greffet, J. J.

F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16(8), 5305–5313 (2008).
[CrossRef] [PubMed]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

J. J. Greffet and M. Nieto-Vesperinas, “Field theory for the generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchoff’ law,” J. Opt. Soc. Am. A 15(10), 2735 (1998).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Guilet, S.

E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
[CrossRef]

Hanarp, P.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Hane, K.

Hatade, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Herminghaus, S.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[CrossRef]

Hesketh, P. J.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986) (Not metal.).
[CrossRef]

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Homeyer, E.

E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
[CrossRef]

Houel, J.

E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
[CrossRef]

Hutley, M. C.

D. Maystre and M. C. Hutley, “The total absorption of light by a diffractive grating,” Opt. Commun. 168, 431 (1976).

Ikeda, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Inoue, Y.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface Eenhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Joulain, K.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Käll, M.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Kanakugi, T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Kanamori, Y.

Kasaya, T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Kitagawa, S.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface Eenhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface Eenhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Knoll, W.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Kreiter, M.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[CrossRef]

Laroche, M.

Lemaître, A.

E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
[CrossRef]

Lereu, A. L.

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films 497(1-2), 315–320 (2006).
[CrossRef]

Lezec, H. J.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Lin, S. Y.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Long, L. L.

Maier, S. A.

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
[CrossRef]

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Marquier, F.

F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16(8), 5305–5313 (2008).
[CrossRef] [PubMed]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

Maystre, D.

D. Maystre and M. C. Hutley, “The total absorption of light by a diffractive grating,” Opt. Commun. 168, 431 (1976).

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Meriaudeau, F.

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films 497(1-2), 315–320 (2006).
[CrossRef]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Miard, A.

E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
[CrossRef]

Mittler-Neher, S.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[CrossRef]

Miyazaki, H. T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Mulet, J. P.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

Okada, M.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Olofsson, L.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Ordal, M. A.

Oster, J.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[CrossRef]

Passian, A.

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films 497(1-2), 315–320 (2006).
[CrossRef]

Perelman, L.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface Eenhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Prikulis, J.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Puscasu, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Ritchie, R. H.

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films 497(1-2), 315–320 (2006).
[CrossRef]

Rodriguez, K. R.

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

Rogers, T. M.

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

Sagnes, I.

E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
[CrossRef]

Sai, H.

Sambles, R.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[CrossRef]

Sauvage, S.

E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Stafford, A. D.

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

Sutherland, D.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Thundat, T.

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films 497(1-2), 315–320 (2006).
[CrossRef]

Wan, J. T. K.

J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface Eenhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Ward, C. A.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Williams, S. M.

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Yamamoto, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Yugami, H.

Zemel, J. N.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986) (Not metal.).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. B

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

Nano Lett.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986) (Not metal.).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Opt. Commun.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field,” Opt. Commun. 237(4-6), 379–388 (2004).
[CrossRef]

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, “Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons,” Opt. Commun. 168(1-4), 117–122 (1999).
[CrossRef]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009).
[CrossRef]

D. Maystre and M. C. Hutley, “The total absorption of light by a diffractive grating,” Opt. Commun. 168, 431 (1976).

Opt. Express

Phys. Rev. B

E. Homeyer, J. Houel, X. Checoury, G. Fishman, S. Sauvage, P. Boucaud, S. Guilet, R. Braive, A. Miard, A. Lemaître, and I. Sagnes, “Thermal Emission of Midinfrared GaAs Photonic Crystals,” Phys. Rev. B 78(16), 165305 (2008).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Phys. Rev. Lett.

K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface Eenhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

R. Carminati and J. Greffet, “Near Field Effects in Spatial Coherence of Thermal Sources,” Phys. Rev. Lett. 82(8), 1660–1663 (1999).
[CrossRef]

Science

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Thin Solid Films

A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films 497(1-2), 315–320 (2006).
[CrossRef]

Other

W. L. Wolfe, and G. J. Zissis, The Infrared Handbook, revised edition (Environmental Research Institute of Michigan, 1989).

H. Räther, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics of (a) reflection and (b) thermal emission setup. (c) Schematic and Scanning electron microscope image of a patterned and etched steel sample. Note the micro-crystalline roughness and pitting caused by the etching process. Coordinate system for TM,TE polarized light is indicated (d) Dielectric permittivity data used in Comsol modeling (from ref. [25]).

Fig. 2
Fig. 2

(a) TM/TE reflection (black) and 200 °C TM/TE emission (red) spectra of a 1 μm deep patterned steel sample. (b) Background-corrected TM/TE emission spectra at 200 °C for chemically etched steel and etched glass (x10) with various groove depths and 10μm periodicity.

Fig. 3
Fig. 3

(a) Numerically modeled electric field intensity for light normally incident on a patterned steel surface (10µm period). (b) Normalized time averaged power flow at the metal/air interface measured 50 µm from the edge of the incident beam as a function of wavelength for TM (red) and TE (blue) polarized light. Peak selectivity for the modeled structure is a factor of ~5 stronger than our largest experimentally observed selectivity (presumably due to the fabrication-related damage to the steel surface).

Fig. 4
Fig. 4

(a) Emission selectivity at 1000 cm−1 as a function of groove depth, with a fit line indicating an optimal groove depth for selective thermal emission relative intensity. (b) TE polarized and, (c) TM polarized thermal image of patterned and chemically etched steel at 100°C. The polarized, enhanced emission is clearly visible in the TM polarized image. Note that the temperature scale is calibrated to objects with an emissivity of 0.1. The scale does not indicate the surface temperature of the steel and is provided as a reference only.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω s p p 2 = c k s p p 2 ( ε m + ε d ε m ε d )
k s p p = k p h sin θ ± 2 π N Λ

Metrics