Abstract

We have demonstrated an ultrashort, compact green light radiation by frequency doubling of an all-fiber ytterbium-doped fiber laser source in a PPKTP waveguide fabricated by femtosecond laser pulses. Using the fabricated PPKTP waveguide crystal containing a 10 mm single grating with a period of 9.0 μm, we generate 310 mW of picosecond radiation at 532 nm for a fundamental power of 1.6W, corresponding to a conversion efficiency of 19.3%. The temperature tuning range of 8°C is achieved for a fixed fundamental wavelength of 1064 nm, the FWHM of the wavelength tuning curve is 4.2 nm at room temperature. The generated ultrashort pulses at 532 nm are of great importance and have comprehensive applications in photobiology research and high-resolution spectroscopy.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad, Introduction to Biophotonics (Wiley & Sons, Hoboken, 2003), Chap. 7.
  2. R. S. Knox, “Ultrashort processes and biology,” J. Photochem. Photobiol. 49(2-3), 81–88 (1999).
    [CrossRef]
  3. W. Rudolph, P. Dorn, X. Liu, N. Vretenar, and R. Stock, “Microscopy with femtosecond laser pulses: applications in engineering, physics and biomedicine,” Appl. Surf. Sci. 208–209, 327–332 (2003).
    [CrossRef]
  4. S. W. Hell, P. E. Hanninen, J. Salo, A. Kuusisto, E. Soini, T. Wilson, and J. B. Tan, “Pulsed and cw confocal microscopy - a comparison of resolution and contrast,” Opt. Commun. 113(1-3), 144–152 (1994).
    [CrossRef]
  5. M. Jansson, J. Roeraade, and F. Laurell, “Laser-induced fluorescence detection in capillary electrophoresis with blue light from a frequency-doubled diode laser,” Anal. Chem. 65(20), 2766–2769 (1993).
    [CrossRef]
  6. Y. Q. Li, D. Guzun, G. Salamo, and M. Xiao, “High-efficiency blue-light generation by frequency doubling of picosecond pulses in a thick KNbO3 crystal,” J. Opt. Soc. Am. B 20(6), 1285–1289 (2003).
    [CrossRef]
  7. V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Highly efficient green-light generation by quasi-phase-matched frequency doubling of picosecond pulses from an amplified mode-locked Nd:YLF laser,” Opt. Lett. 21(6), 390–392 (1996).
    [CrossRef] [PubMed]
  8. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009).
    [CrossRef]
  9. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
    [CrossRef]
  10. H. J. Liu, C. X. Gao, J. T. Tao, W. Zhao, and Y. S. Wang, “Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode,” Opt. Express 16(11), 7888–7893 (2008).
    [CrossRef] [PubMed]
  11. P. A. Champert, S. V. Popov, and J. R. Taylor, “3.5 W frequency-doubled fiber-based laser source at 772 nm,” Appl. Phys. Lett. 78(17), 2420–2421 (2001).
    [CrossRef]
  12. F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, “Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN,” Opt. Express 15(20), 12882–12889 (2007).
    [CrossRef] [PubMed]
  13. G. K. Samanta, S. C. Kumar, M. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, “High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO(4),” Opt. Lett. 33(24), 2955–2957 (2008).
    [CrossRef] [PubMed]
  14. Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, “Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate,” Appl. Phys. Lett. 73(7), 873–875 (1998).
    [CrossRef]
  15. B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, “Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal,” Opt. Lett. 28(20), 1963–1965 (2003).
    [CrossRef] [PubMed]
  16. S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator,” Opt. Lett. 31(3), 347–349 (2006).
    [CrossRef] [PubMed]
  17. F. Laurell, J. B. Brown, and J. D. Bierlein, “Sum-frequency generation in segmented KTP waveguides,” Appl. Phys. Lett. 60(9), 1064–1066 (1992).
    [CrossRef]
  18. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  19. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
    [CrossRef]
  20. J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
    [CrossRef]
  21. S. Campbell, R. R. Thomson, D. P. Hand, A. K. Kar, D. T. Reid, C. Canalias, V. Pasiskevicius, and F. Laurell, “Frequency-doubling in femtosecond laser inscribed periodically-poled potassium titanyl phosphate waveguides,” Opt. Express 15(25), 17146–17150 (2007).
    [CrossRef] [PubMed]
  22. S. G. Zhang, J. H. Yao, W. W. Liu, Z. C. Huang, J. Wang, Y. N. Li, C. H. Tu, and F. Y. Lu, “Second harmonic generation of periodically poled potassium titanyl phosphate waveguide using femtosecond laser pulses,” Opt. Express 16(18), 14180–14185 (2008).
    [CrossRef] [PubMed]
  23. V. Pasiskevicius, S. H. Wang, J. A. Tellefsen, F. Laurell, and H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37(30), 7116–7119 (1998).
    [CrossRef]
  24. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
    [CrossRef]
  25. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [CrossRef]
  26. F. Laurell, “Periodically poled materials for miniature light sources,” Opt. Mater. 11(2-3), 235–244 (1999).
    [CrossRef]
  27. D. A. Chestnut, S. V. Popov, J. R. Taylor, and T. D. Roberts, “Second-harmonic generation to the green and yellow using picosecond fiber pump sources and periodically poled waveguides,” Appl. Phys. Lett. 88(7), 071113 (2006).
    [CrossRef]
  28. S. Janz, J. Ctyroky, and S. Tanev, Frontiers in Planar Lightwave Circuit Technology: Design, Simulation, and Fabrication (Springer. Printed in the Netherlands,2006), Chap. 8.
  29. G. P. Agrawal, Nonlinear fiber optics, (Elsewvier Pte Ltd. Singapore, 2005 third edition), Chap. 3.
  30. Z. C. Huang, C. H. Tu, S. G. Zhang, Y. N. Li, F. Y. Lu, Y. X. Fan, and E. B. Li, “Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides written by femtosecond laser pulses,” Opt. Lett. 35(6), 877–879 (2010).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (3)

2007 (4)

F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, “Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN,” Opt. Express 15(20), 12882–12889 (2007).
[CrossRef] [PubMed]

S. Campbell, R. R. Thomson, D. P. Hand, A. K. Kar, D. T. Reid, C. Canalias, V. Pasiskevicius, and F. Laurell, “Frequency-doubling in femtosecond laser inscribed periodically-poled potassium titanyl phosphate waveguides,” Opt. Express 15(25), 17146–17150 (2007).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

2006 (4)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[CrossRef]

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

D. A. Chestnut, S. V. Popov, J. R. Taylor, and T. D. Roberts, “Second-harmonic generation to the green and yellow using picosecond fiber pump sources and periodically poled waveguides,” Appl. Phys. Lett. 88(7), 071113 (2006).
[CrossRef]

S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator,” Opt. Lett. 31(3), 347–349 (2006).
[CrossRef] [PubMed]

2003 (3)

2001 (1)

P. A. Champert, S. V. Popov, and J. R. Taylor, “3.5 W frequency-doubled fiber-based laser source at 772 nm,” Appl. Phys. Lett. 78(17), 2420–2421 (2001).
[CrossRef]

1999 (2)

R. S. Knox, “Ultrashort processes and biology,” J. Photochem. Photobiol. 49(2-3), 81–88 (1999).
[CrossRef]

F. Laurell, “Periodically poled materials for miniature light sources,” Opt. Mater. 11(2-3), 235–244 (1999).
[CrossRef]

1998 (2)

V. Pasiskevicius, S. H. Wang, J. A. Tellefsen, F. Laurell, and H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37(30), 7116–7119 (1998).
[CrossRef]

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, “Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate,” Appl. Phys. Lett. 73(7), 873–875 (1998).
[CrossRef]

1996 (2)

1994 (1)

S. W. Hell, P. E. Hanninen, J. Salo, A. Kuusisto, E. Soini, T. Wilson, and J. B. Tan, “Pulsed and cw confocal microscopy - a comparison of resolution and contrast,” Opt. Commun. 113(1-3), 144–152 (1994).
[CrossRef]

1993 (1)

M. Jansson, J. Roeraade, and F. Laurell, “Laser-induced fluorescence detection in capillary electrophoresis with blue light from a frequency-doubled diode laser,” Anal. Chem. 65(20), 2766–2769 (1993).
[CrossRef]

1992 (1)

F. Laurell, J. B. Brown, and J. D. Bierlein, “Sum-frequency generation in segmented KTP waveguides,” Appl. Phys. Lett. 60(9), 1064–1066 (1992).
[CrossRef]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Agate, B.

Ancona, A.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

Battle, P.

Bierlein, J. D.

F. Laurell, J. B. Brown, and J. D. Bierlein, “Sum-frequency generation in segmented KTP waveguides,” Appl. Phys. Lett. 60(9), 1064–1066 (1992).
[CrossRef]

Bookey, H. T.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Brown, J. B.

F. Laurell, J. B. Brown, and J. D. Bierlein, “Sum-frequency generation in segmented KTP waveguides,” Appl. Phys. Lett. 60(9), 1064–1066 (1992).
[CrossRef]

Burghoff, J.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[CrossRef]

Butterworth, S. D.

Byer, R. L.

Calia, D. B.

Campbell, S.

Canalias, C.

Cerullo, G.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Champert, P. A.

P. A. Champert, S. V. Popov, and J. R. Taylor, “3.5 W frequency-doubled fiber-based laser source at 772 nm,” Appl. Phys. Lett. 78(17), 2420–2421 (2001).
[CrossRef]

Chestnut, D. A.

D. A. Chestnut, S. V. Popov, J. R. Taylor, and T. D. Roberts, “Second-harmonic generation to the green and yellow using picosecond fiber pump sources and periodically poled waveguides,” Appl. Phys. Lett. 88(7), 071113 (2006).
[CrossRef]

Chiodo, N.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Dajani, I.

Davis, K. M.

Digonnet, M. J. F.

Ding, Y. J.

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, “Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate,” Appl. Phys. Lett. 73(7), 873–875 (1998).
[CrossRef]

Dorn, P.

W. Rudolph, P. Dorn, X. Liu, N. Vretenar, and R. Stock, “Microscopy with femtosecond laser pulses: applications in engineering, physics and biomedicine,” Appl. Surf. Sci. 208–209, 327–332 (2003).
[CrossRef]

Dupriez, P.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Ebrahim-Zadeh, M.

Fan, Y. X.

Fejer, M. M.

Feng, Y.

Fry, T.

Gao, C. X.

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[CrossRef]

Guzun, D.

Hand, D. P.

Hanna, D. C.

Hanninen, P. E.

S. W. Hell, P. E. Hanninen, J. Salo, A. Kuusisto, E. Soini, T. Wilson, and J. B. Tan, “Pulsed and cw confocal microscopy - a comparison of resolution and contrast,” Opt. Commun. 113(1-3), 144–152 (1994).
[CrossRef]

Heinrich, M.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

Hell, S. W.

S. W. Hell, P. E. Hanninen, J. Salo, A. Kuusisto, E. Soini, T. Wilson, and J. B. Tan, “Pulsed and cw confocal microscopy - a comparison of resolution and contrast,” Opt. Commun. 113(1-3), 144–152 (1994).
[CrossRef]

Hickey, L. M. B.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Hirao, K.

Huang, Z. C.

Ibsen, M.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Jansson, M.

M. Jansson, J. Roeraade, and F. Laurell, “Laser-induced fluorescence detection in capillary electrophoresis with blue light from a frequency-doubled diode laser,” Anal. Chem. 65(20), 2766–2769 (1993).
[CrossRef]

Jeong, Y.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Kar, A. K.

S. Campbell, R. R. Thomson, D. P. Hand, A. K. Kar, D. T. Reid, C. Canalias, V. Pasiskevicius, and F. Laurell, “Frequency-doubling in femtosecond laser inscribed periodically-poled potassium titanyl phosphate waveguides,” Opt. Express 15(25), 17146–17150 (2007).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Karlsson, H.

Khurgin, J. B.

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, “Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate,” Appl. Phys. Lett. 73(7), 873–875 (1998).
[CrossRef]

Knize, R. J.

Knox, R. S.

R. S. Knox, “Ultrashort processes and biology,” J. Photochem. Photobiol. 49(2-3), 81–88 (1999).
[CrossRef]

Kontur, F. J.

Kumar, S. C.

Kuusisto, A.

S. W. Hell, P. E. Hanninen, J. Salo, A. Kuusisto, E. Soini, T. Wilson, and J. B. Tan, “Pulsed and cw confocal microscopy - a comparison of resolution and contrast,” Opt. Commun. 113(1-3), 144–152 (1994).
[CrossRef]

Langrock, C.

Laurell, F.

Li, E. B.

Li, Y. N.

Li, Y. Q.

Liu, H. J.

Liu, W. W.

Liu, X.

W. Rudolph, P. Dorn, X. Liu, N. Vretenar, and R. Stock, “Microscopy with femtosecond laser pulses: applications in engineering, physics and biomedicine,” Appl. Surf. Sci. 208–209, 327–332 (2003).
[CrossRef]

Lobino, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Lu, F. Y.

Lu, Y.

Malinowski, A.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Marangoni, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Mathew, M.

Miura, K.

Nilsson, J.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Nolte, S.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[CrossRef]

Noonan, E.

Osellame, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Pasiskevicius, V.

Petrov, V.

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, “Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate,” Appl. Phys. Lett. 73(7), 873–875 (1998).
[CrossRef]

Piper, A.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Popov, S. V.

D. A. Chestnut, S. V. Popov, J. R. Taylor, and T. D. Roberts, “Second-harmonic generation to the green and yellow using picosecond fiber pump sources and periodically poled waveguides,” Appl. Phys. Lett. 88(7), 071113 (2006).
[CrossRef]

P. A. Champert, S. V. Popov, and J. R. Taylor, “3.5 W frequency-doubled fiber-based laser source at 772 nm,” Appl. Phys. Lett. 78(17), 2420–2421 (2001).
[CrossRef]

Pruneri, V.

Psaila, N. D.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Rafailov, E. U.

Ramponi, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Reid, D. T.

Richardson, D. J.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Risk, W. P.

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, “Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate,” Appl. Phys. Lett. 73(7), 873–875 (1998).
[CrossRef]

Roberts, T. D.

D. A. Chestnut, S. V. Popov, J. R. Taylor, and T. D. Roberts, “Second-harmonic generation to the green and yellow using picosecond fiber pump sources and periodically poled waveguides,” Appl. Phys. Lett. 88(7), 071113 (2006).
[CrossRef]

Roeraade, J.

M. Jansson, J. Roeraade, and F. Laurell, “Laser-induced fluorescence detection in capillary electrophoresis with blue light from a frequency-doubled diode laser,” Anal. Chem. 65(20), 2766–2769 (1993).
[CrossRef]

Rudolph, W.

W. Rudolph, P. Dorn, X. Liu, N. Vretenar, and R. Stock, “Microscopy with femtosecond laser pulses: applications in engineering, physics and biomedicine,” Appl. Surf. Sci. 208–209, 327–332 (2003).
[CrossRef]

Sahu, J. K.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Salamo, G.

Salo, J.

S. W. Hell, P. E. Hanninen, J. Salo, A. Kuusisto, E. Soini, T. Wilson, and J. B. Tan, “Pulsed and cw confocal microscopy - a comparison of resolution and contrast,” Opt. Commun. 113(1-3), 144–152 (1994).
[CrossRef]

Saltiel, S. M.

Samanta, G. K.

Sibbett, W.

Sinha, S.

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Soini, E.

S. W. Hell, P. E. Hanninen, J. Salo, A. Kuusisto, E. Soini, T. Wilson, and J. B. Tan, “Pulsed and cw confocal microscopy - a comparison of resolution and contrast,” Opt. Commun. 113(1-3), 144–152 (1994).
[CrossRef]

Stock, R.

W. Rudolph, P. Dorn, X. Liu, N. Vretenar, and R. Stock, “Microscopy with femtosecond laser pulses: applications in engineering, physics and biomedicine,” Appl. Surf. Sci. 208–209, 327–332 (2003).
[CrossRef]

Sugimoto, N.

Tan, J. B.

S. W. Hell, P. E. Hanninen, J. Salo, A. Kuusisto, E. Soini, T. Wilson, and J. B. Tan, “Pulsed and cw confocal microscopy - a comparison of resolution and contrast,” Opt. Commun. 113(1-3), 144–152 (1994).
[CrossRef]

Tao, J. T.

Taylor, J. R.

D. A. Chestnut, S. V. Popov, J. R. Taylor, and T. D. Roberts, “Second-harmonic generation to the green and yellow using picosecond fiber pump sources and periodically poled waveguides,” Appl. Phys. Lett. 88(7), 071113 (2006).
[CrossRef]

P. A. Champert, S. V. Popov, and J. R. Taylor, “3.5 W frequency-doubled fiber-based laser source at 772 nm,” Appl. Phys. Lett. 78(17), 2420–2421 (2001).
[CrossRef]

Taylor, L. R.

Tellefsen, J. A.

Thomas, J.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

Thomsen, B. C.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Thomson, R. R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

S. Campbell, R. R. Thomson, D. P. Hand, A. K. Kar, D. T. Reid, C. Canalias, V. Pasiskevicius, and F. Laurell, “Frequency-doubling in femtosecond laser inscribed periodically-poled potassium titanyl phosphate waveguides,” Opt. Express 15(25), 17146–17150 (2007).
[CrossRef] [PubMed]

Tu, C. H.

Tünnermann, A.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[CrossRef]

Vretenar, N.

W. Rudolph, P. Dorn, X. Liu, N. Vretenar, and R. Stock, “Microscopy with femtosecond laser pulses: applications in engineering, physics and biomedicine,” Appl. Surf. Sci. 208–209, 327–332 (2003).
[CrossRef]

Wang, J.

Wang, S. H.

Wang, Y.

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, “Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate,” Appl. Phys. Lett. 73(7), 873–875 (1998).
[CrossRef]

Wang, Y. S.

Wilson, T.

S. W. Hell, P. E. Hanninen, J. Salo, A. Kuusisto, E. Soini, T. Wilson, and J. B. Tan, “Pulsed and cw confocal microscopy - a comparison of resolution and contrast,” Opt. Commun. 113(1-3), 144–152 (1994).
[CrossRef]

Xiao, M.

Yao, J. H.

Zervas, M. N.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Zhang, S. G.

Zhao, W.

Zheng, Y.

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, “Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate,” Appl. Phys. Lett. 73(7), 873–875 (1998).
[CrossRef]

Anal. Chem. (1)

M. Jansson, J. Roeraade, and F. Laurell, “Laser-induced fluorescence detection in capillary electrophoresis with blue light from a frequency-doubled diode laser,” Anal. Chem. 65(20), 2766–2769 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Appl. Phys. Lett. (7)

D. A. Chestnut, S. V. Popov, J. R. Taylor, and T. D. Roberts, “Second-harmonic generation to the green and yellow using picosecond fiber pump sources and periodically poled waveguides,” Appl. Phys. Lett. 88(7), 071113 (2006).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[CrossRef]

F. Laurell, J. B. Brown, and J. D. Bierlein, “Sum-frequency generation in segmented KTP waveguides,” Appl. Phys. Lett. 60(9), 1064–1066 (1992).
[CrossRef]

P. A. Champert, S. V. Popov, and J. R. Taylor, “3.5 W frequency-doubled fiber-based laser source at 772 nm,” Appl. Phys. Lett. 78(17), 2420–2421 (2001).
[CrossRef]

Y. Wang, V. Petrov, Y. J. Ding, Y. Zheng, J. B. Khurgin, and W. P. Risk, “Ultrafast generation of blue light by efficient second-harmonic generation in periodically-poled bulk and waveguide potassium titanyl phosphate,” Appl. Phys. Lett. 73(7), 873–875 (1998).
[CrossRef]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[CrossRef]

Appl. Surf. Sci. (1)

W. Rudolph, P. Dorn, X. Liu, N. Vretenar, and R. Stock, “Microscopy with femtosecond laser pulses: applications in engineering, physics and biomedicine,” Appl. Surf. Sci. 208–209, 327–332 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. (1)

R. S. Knox, “Ultrashort processes and biology,” J. Photochem. Photobiol. 49(2-3), 81–88 (1999).
[CrossRef]

Opt. Commun. (1)

S. W. Hell, P. E. Hanninen, J. Salo, A. Kuusisto, E. Soini, T. Wilson, and J. B. Tan, “Pulsed and cw confocal microscopy - a comparison of resolution and contrast,” Opt. Commun. 113(1-3), 144–152 (1994).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Opt. Mater. (1)

F. Laurell, “Periodically poled materials for miniature light sources,” Opt. Mater. 11(2-3), 235–244 (1999).
[CrossRef]

Other (3)

S. Janz, J. Ctyroky, and S. Tanev, Frontiers in Planar Lightwave Circuit Technology: Design, Simulation, and Fabrication (Springer. Printed in the Netherlands,2006), Chap. 8.

G. P. Agrawal, Nonlinear fiber optics, (Elsewvier Pte Ltd. Singapore, 2005 third edition), Chap. 3.

P. N. Prasad, Introduction to Biophotonics (Wiley & Sons, Hoboken, 2003), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Optical micrograph of the end face of the double line type II waveguide written by femtosecond pulses, and (b) the near-filed guided mode profile at 1064 nm.

Fig. 2
Fig. 2

The experimental set-up used for SHG. ISO: optical isolator, LMA: large mode area, YDF: ytterbium-doped fiber, 1/2λ: half wave plate, PBS: polarization beam splitter, MO: microscope objective, FW: fundamental wave.

Fig. 3
Fig. 3

(a) The tunable spectra and (b) the intensity autocorrelation of the fundamental pulses. In (b) the dotted line represents the theoretical autocorrelation of a pedestal-free sech2 pulse with τFWHM = 90 ps, inset is the Gaussian shape beam profile.

Fig. 4
Fig. 4

Measured temperature tuning curve for SHG at the matching temperature of 24°C.

Fig. 5
Fig. 5

Measured wavelength tuning curve for SHG. Inset is the far-field profile of generated green beam.

Fig. 6
Fig. 6

Dependence of the measured SHG power (in waveguide and in crystal) and the corresponding conversion efficiency (in waveguide) on the incident fundamental power.

Fig. 7
Fig. 7

The SHG spectra obtained at different pump levels.

Fig. 8
Fig. 8

The normalized spectra of the SHG pulses with different fundamental pump wavelengths. Inset is the SHG spectrum at a pump wavelength of 1064nm.

Metrics