Abstract

Triply doped Y3Al5O12: Ce3+, Pr3+, Cr3+ phosphors are prepared by solid state reaction. The emission spectra are enriched in the red region with the luminescence of both Pr3+ and Cr3+ through Ce3+→Cr3+ and Ce3+→Pr3+→Cr3+ energy transfers. The properties of photoluminescence and fluorescence decay indicates larger macroscopic Ce3+→Cr3+ transfer rates in the triply doped phosphors in comparison to Ce3+ and Cr3+ doubly doped one, reflecting the effect of competition between Ce3+→Cr3+ and Ce3+→Pr3+ transfers. White LEDs fabricated using the triply doped phosphor coated on blue LED chips show a color rendering index of 81.4 higher than that either using Ce3+ and Cr3+ doubly doped or Ce3+ singly doped phosphor.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Kim and E. F. Schubert, “Transcending the replacement paradigm of solid-state lighting,” Opt. Express 16(26), 21835–21842 (2008).
    [CrossRef] [PubMed]
  2. J. R. Oh, S. H. Cho, Y. H. Lee, and Y. R. Do, “Enhanced forward efficiency of Y3Al5O12:Ce3+ phosphor from white light-emitting diodes using blue-pass yellow-reflection filter,” Opt. Express 17(9), 7450–7457 (2009).
    [CrossRef] [PubMed]
  3. R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides,” IEEE J. Sel. Top. Quantum Electron. 8(2), 339–345 (2002).
    [CrossRef]
  4. H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y 3 Al 5 O 12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin. 126(2), 371–377 (2007).
    [CrossRef]
  5. H. H. Yang and Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors,” J. Lumin. 128(10), 1570–1576 (2008).
    [CrossRef]
  6. Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” Phys. Chem. Solids 65(5), 845–850 (2004).
    [CrossRef]
  7. W. Wang, J. Tang, S. T. V. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett. 457(1-3), 103–105 (2008).
    [CrossRef]
  8. K. M. Kinsman, J. McKittrick, E. Sluzky, and K. Hesse, “Phase Development and Luminescence in Chromium-Doped Yttrium Aluminum Garnet (YAG:Cr) Phosphors,” J. Am. Ceram. Soc. 77(11), 2866–2872 (1994).
    [CrossRef]
  9. G. G. Özen, O. Forte, and B. Di Bartolo, “Down-conversion and upconversion dynamics in Pr-doped Y3Al5O12 crystals,” J. Appl. Phys. 97(1), 013510 (2005).
    [CrossRef]
  10. G. G. Özen, O. Forte, and B. Di Bartolo, “Upconversion dynamics in Pr-doped YAlO3 and Y3Al5O12 laser crystals,” Opt. Mater. 27(11), 1664–1671 (2005).
    [CrossRef]
  11. M. Malinowski, P. Szczepanski, W. Woliñski, R. Wolski, and Z. Frukacz, “Inhomogeneity study of Pr3+-doped yttrium aluminium garnet using time-resolved spectroscopy,” J. Phys. Condens. Matter 5(35), 6469–6482 (1993).
    [CrossRef]
  12. Y. R. Shen and K. L. Bray, “Effect of pressure and temperature on the lifetime of Cr3+ in yttrium aluminum garnet,” Phys. Rev. B 56(17), 10882–10891 (1997).
    [CrossRef]
  13. W. W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr+4 ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
    [CrossRef]

2009

2008

J. K. Kim and E. F. Schubert, “Transcending the replacement paradigm of solid-state lighting,” Opt. Express 16(26), 21835–21842 (2008).
[CrossRef] [PubMed]

H. H. Yang and Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors,” J. Lumin. 128(10), 1570–1576 (2008).
[CrossRef]

W. Wang, J. Tang, S. T. V. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett. 457(1-3), 103–105 (2008).
[CrossRef]

2007

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y 3 Al 5 O 12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin. 126(2), 371–377 (2007).
[CrossRef]

2005

G. G. Özen, O. Forte, and B. Di Bartolo, “Down-conversion and upconversion dynamics in Pr-doped Y3Al5O12 crystals,” J. Appl. Phys. 97(1), 013510 (2005).
[CrossRef]

G. G. Özen, O. Forte, and B. Di Bartolo, “Upconversion dynamics in Pr-doped YAlO3 and Y3Al5O12 laser crystals,” Opt. Mater. 27(11), 1664–1671 (2005).
[CrossRef]

2004

Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” Phys. Chem. Solids 65(5), 845–850 (2004).
[CrossRef]

2002

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides,” IEEE J. Sel. Top. Quantum Electron. 8(2), 339–345 (2002).
[CrossRef]

1997

Y. R. Shen and K. L. Bray, “Effect of pressure and temperature on the lifetime of Cr3+ in yttrium aluminum garnet,” Phys. Rev. B 56(17), 10882–10891 (1997).
[CrossRef]

1994

K. M. Kinsman, J. McKittrick, E. Sluzky, and K. Hesse, “Phase Development and Luminescence in Chromium-Doped Yttrium Aluminum Garnet (YAG:Cr) Phosphors,” J. Am. Ceram. Soc. 77(11), 2866–2872 (1994).
[CrossRef]

1993

M. Malinowski, P. Szczepanski, W. Woliñski, R. Wolski, and Z. Frukacz, “Inhomogeneity study of Pr3+-doped yttrium aluminium garnet using time-resolved spectroscopy,” J. Phys. Condens. Matter 5(35), 6469–6482 (1993).
[CrossRef]

1991

W. W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr+4 ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[CrossRef]

Bray, K. L.

Y. R. Shen and K. L. Bray, “Effect of pressure and temperature on the lifetime of Cr3+ in yttrium aluminum garnet,” Phys. Rev. B 56(17), 10882–10891 (1997).
[CrossRef]

Cho, S. H.

Denker, B.

W. W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr+4 ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[CrossRef]

Di Bartolo, B.

G. G. Özen, O. Forte, and B. Di Bartolo, “Down-conversion and upconversion dynamics in Pr-doped Y3Al5O12 crystals,” J. Appl. Phys. 97(1), 013510 (2005).
[CrossRef]

G. G. Özen, O. Forte, and B. Di Bartolo, “Upconversion dynamics in Pr-doped YAlO3 and Y3Al5O12 laser crystals,” Opt. Mater. 27(11), 1664–1671 (2005).
[CrossRef]

Do, Y. R.

Forte, O.

G. G. Özen, O. Forte, and B. Di Bartolo, “Down-conversion and upconversion dynamics in Pr-doped Y3Al5O12 crystals,” J. Appl. Phys. 97(1), 013510 (2005).
[CrossRef]

G. G. Özen, O. Forte, and B. Di Bartolo, “Upconversion dynamics in Pr-doped YAlO3 and Y3Al5O12 laser crystals,” Opt. Mater. 27(11), 1664–1671 (2005).
[CrossRef]

Frukacz, Z.

M. Malinowski, P. Szczepanski, W. Woliñski, R. Wolski, and Z. Frukacz, “Inhomogeneity study of Pr3+-doped yttrium aluminium garnet using time-resolved spectroscopy,” J. Phys. Condens. Matter 5(35), 6469–6482 (1993).
[CrossRef]

Hesse, K.

K. M. Kinsman, J. McKittrick, E. Sluzky, and K. Hesse, “Phase Development and Luminescence in Chromium-Doped Yttrium Aluminum Garnet (YAG:Cr) Phosphors,” J. Am. Ceram. Soc. 77(11), 2866–2872 (1994).
[CrossRef]

Hsu, S. T. V.

W. Wang, J. Tang, S. T. V. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett. 457(1-3), 103–105 (2008).
[CrossRef]

Im, W. B.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y 3 Al 5 O 12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin. 126(2), 371–377 (2007).
[CrossRef]

Jaffe, S.

W. W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr+4 ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[CrossRef]

Jang, H. S.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y 3 Al 5 O 12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin. 126(2), 371–377 (2007).
[CrossRef]

Jeon, D. Y.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y 3 Al 5 O 12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin. 126(2), 371–377 (2007).
[CrossRef]

Jia, W. W.

W. W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr+4 ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[CrossRef]

Kim, J. K.

Kim, S. S.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y 3 Al 5 O 12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin. 126(2), 371–377 (2007).
[CrossRef]

Kim, Y. S.

H. H. Yang and Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors,” J. Lumin. 128(10), 1570–1576 (2008).
[CrossRef]

Kinsman, K. M.

K. M. Kinsman, J. McKittrick, E. Sluzky, and K. Hesse, “Phase Development and Luminescence in Chromium-Doped Yttrium Aluminum Garnet (YAG:Cr) Phosphors,” J. Am. Ceram. Soc. 77(11), 2866–2872 (1994).
[CrossRef]

Krames, M. R.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides,” IEEE J. Sel. Top. Quantum Electron. 8(2), 339–345 (2002).
[CrossRef]

Lee, D. C.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y 3 Al 5 O 12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin. 126(2), 371–377 (2007).
[CrossRef]

Lee, Y. H.

Liu, H.

W. W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr+4 ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[CrossRef]

Malinowski, M.

M. Malinowski, P. Szczepanski, W. Woliñski, R. Wolski, and Z. Frukacz, “Inhomogeneity study of Pr3+-doped yttrium aluminium garnet using time-resolved spectroscopy,” J. Phys. Condens. Matter 5(35), 6469–6482 (1993).
[CrossRef]

McKittrick, J.

K. M. Kinsman, J. McKittrick, E. Sluzky, and K. Hesse, “Phase Development and Luminescence in Chromium-Doped Yttrium Aluminum Garnet (YAG:Cr) Phosphors,” J. Am. Ceram. Soc. 77(11), 2866–2872 (1994).
[CrossRef]

Mueller, G. O.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides,” IEEE J. Sel. Top. Quantum Electron. 8(2), 339–345 (2002).
[CrossRef]

Mueller-Mach, R.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides,” IEEE J. Sel. Top. Quantum Electron. 8(2), 339–345 (2002).
[CrossRef]

Oh, J. R.

Özen, G. G.

G. G. Özen, O. Forte, and B. Di Bartolo, “Down-conversion and upconversion dynamics in Pr-doped Y3Al5O12 crystals,” J. Appl. Phys. 97(1), 013510 (2005).
[CrossRef]

G. G. Özen, O. Forte, and B. Di Bartolo, “Upconversion dynamics in Pr-doped YAlO3 and Y3Al5O12 laser crystals,” Opt. Mater. 27(11), 1664–1671 (2005).
[CrossRef]

Pan, Y.

Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” Phys. Chem. Solids 65(5), 845–850 (2004).
[CrossRef]

Schubert, E. F.

Shen, Y. R.

Y. R. Shen and K. L. Bray, “Effect of pressure and temperature on the lifetime of Cr3+ in yttrium aluminum garnet,” Phys. Rev. B 56(17), 10882–10891 (1997).
[CrossRef]

Sluzky, E.

K. M. Kinsman, J. McKittrick, E. Sluzky, and K. Hesse, “Phase Development and Luminescence in Chromium-Doped Yttrium Aluminum Garnet (YAG:Cr) Phosphors,” J. Am. Ceram. Soc. 77(11), 2866–2872 (1994).
[CrossRef]

Su, Q.

Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” Phys. Chem. Solids 65(5), 845–850 (2004).
[CrossRef]

Sullivan, B. P.

W. Wang, J. Tang, S. T. V. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett. 457(1-3), 103–105 (2008).
[CrossRef]

Szczepanski, P.

M. Malinowski, P. Szczepanski, W. Woliñski, R. Wolski, and Z. Frukacz, “Inhomogeneity study of Pr3+-doped yttrium aluminium garnet using time-resolved spectroscopy,” J. Phys. Condens. Matter 5(35), 6469–6482 (1993).
[CrossRef]

Tang, J.

W. Wang, J. Tang, S. T. V. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett. 457(1-3), 103–105 (2008).
[CrossRef]

Trottier, T.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides,” IEEE J. Sel. Top. Quantum Electron. 8(2), 339–345 (2002).
[CrossRef]

Wang, J.

W. Wang, J. Tang, S. T. V. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett. 457(1-3), 103–105 (2008).
[CrossRef]

Wang, W.

W. Wang, J. Tang, S. T. V. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett. 457(1-3), 103–105 (2008).
[CrossRef]

Woliñski, W.

M. Malinowski, P. Szczepanski, W. Woliñski, R. Wolski, and Z. Frukacz, “Inhomogeneity study of Pr3+-doped yttrium aluminium garnet using time-resolved spectroscopy,” J. Phys. Condens. Matter 5(35), 6469–6482 (1993).
[CrossRef]

Wolski, R.

M. Malinowski, P. Szczepanski, W. Woliñski, R. Wolski, and Z. Frukacz, “Inhomogeneity study of Pr3+-doped yttrium aluminium garnet using time-resolved spectroscopy,” J. Phys. Condens. Matter 5(35), 6469–6482 (1993).
[CrossRef]

Wu, M.

Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” Phys. Chem. Solids 65(5), 845–850 (2004).
[CrossRef]

Yang, H. H.

H. H. Yang and Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors,” J. Lumin. 128(10), 1570–1576 (2008).
[CrossRef]

Yen, W. M.

W. W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr+4 ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[CrossRef]

Chem. Phys. Lett.

W. Wang, J. Tang, S. T. V. Hsu, J. Wang, and B. P. Sullivan, “Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors,” Chem. Phys. Lett. 457(1-3), 103–105 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides,” IEEE J. Sel. Top. Quantum Electron. 8(2), 339–345 (2002).
[CrossRef]

J. Am. Ceram. Soc.

K. M. Kinsman, J. McKittrick, E. Sluzky, and K. Hesse, “Phase Development and Luminescence in Chromium-Doped Yttrium Aluminum Garnet (YAG:Cr) Phosphors,” J. Am. Ceram. Soc. 77(11), 2866–2872 (1994).
[CrossRef]

J. Appl. Phys.

G. G. Özen, O. Forte, and B. Di Bartolo, “Down-conversion and upconversion dynamics in Pr-doped Y3Al5O12 crystals,” J. Appl. Phys. 97(1), 013510 (2005).
[CrossRef]

J. Lumin.

H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, “Enhancement of red spectral emission intensity of Y 3 Al 5 O 12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumin. 126(2), 371–377 (2007).
[CrossRef]

H. H. Yang and Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors,” J. Lumin. 128(10), 1570–1576 (2008).
[CrossRef]

J. Phys. Condens. Matter

M. Malinowski, P. Szczepanski, W. Woliñski, R. Wolski, and Z. Frukacz, “Inhomogeneity study of Pr3+-doped yttrium aluminium garnet using time-resolved spectroscopy,” J. Phys. Condens. Matter 5(35), 6469–6482 (1993).
[CrossRef]

Opt. Express

Opt. Mater.

G. G. Özen, O. Forte, and B. Di Bartolo, “Upconversion dynamics in Pr-doped YAlO3 and Y3Al5O12 laser crystals,” Opt. Mater. 27(11), 1664–1671 (2005).
[CrossRef]

Phys. Chem. Solids

Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” Phys. Chem. Solids 65(5), 845–850 (2004).
[CrossRef]

Phys. Rev. B

Y. R. Shen and K. L. Bray, “Effect of pressure and temperature on the lifetime of Cr3+ in yttrium aluminum garnet,” Phys. Rev. B 56(17), 10882–10891 (1997).
[CrossRef]

W. W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, “Spectroscopy of Cr3+ and Cr+4 ions in forsterite,” Phys. Rev. B 43(7), 5234–5242 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

PL and PLE spectra of (Y0.99Ce0.01)3Al5O12 (a), (Y0.99Pr0.005)3Al5O12 (b), Y3(Al0.9925Cr0.0075)5O12 (c), (Y0.99Ce0.01)3(Al0.9925Cr0.0075)5O12 (d), (Y0.99Pr0.005)3(Al0.9925Cr0.0075)5O12 (e) and (Y0.985Ce0.01Pr0.005)3(Al0.9925Cr0.0075)5O12 (f); PL spectra of (Y0.99-yCe0.01Pry)3(Al1-xCrx)5O12, (x = 0, 0.0025, 0.005, 0.0075, 0.01, 0.0125, 0.015; y = 0 (dashed curves), 0.005 (solid curves)). The intensity of the yellow band in each spectrum is normalized(g); Dependence of W”of triply doped samples series A on W' of doubly doped samples series B(h).

Fig. 2
Fig. 2

(a) PL spectra of (Y0.995Pr0.005)3(Al1-xCrx)5O12, (x = 0, 0.0025, 0.005, 0.0075, 0.01, 0.0125, 0.015) under 288 nm excitation. The intensity of the pale red peak in each spectrum is normalized; (b) Pr3+ red fluorescence intensity and lifetime changed with increasing Cr3+ concentration x in (Y0.985Pr0.005Ce0.01)3(Al1-xCrx)5O12. Inset shows decay curves of the pale red fluorescence in (Y0.985Pr0.005Ce0.01)3(Al1-xCrx)5O12 for x = 0, 0.0025, 0.0075 and 0.015.

Fig. 3
Fig. 3

(a) Dependence of the emission ratio (ICe /ICr ) on Cr3+ concentration x in (Y1-z-yCezPry)3(Al1-xCrx)5O12; (b) EL spectra of the white LEDs using different phosphors coated on InGaN-based blue chips.

Tables (2)

Tables Icon

Table 1 Fluorescent lifetimes and transfer efficiencies in (Y0.99Ce0.01)3(Al1-xCrx)5O12 and (Y0.985Ce0.01Pr0.005)3(Al1-x Crx) 5O12

Tables Icon

Table 2 Optical properties of white LED

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W = 1 / τ C e 1 / τ C e , 0 .
I C r / I C e = ( γ C r / γ C e ) W τ C r ,

Metrics