Abstract

Silicon-on-insulator racetrack resonators can be used as multiplexers in wavelength division multiplexing applications. The free spectral range should be comparable to the span of the C-band so that a maximum number of channels can be multiplexed. However, the free spectral range is inversely proportional to the length of the resonator and, therefore, bending losses can become non-negligible. A viable alternative to increase the free spectral range is to use the Vernier effect. In this work, we present the theory of series-coupled racetrack resonators exhibiting the Vernier effect. We demonstrate the experimental performance of the device using silicon-on-insulator strip waveguides. The extended free spectral range is 36 nm and the interstitial peak suppression is from 9 dB to 17 dB.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Zhang, Y. Li, M. Song, J. Yang, R. Beausoleil, and A. Willner, "Silicon microring-based signal modulation for chip-scale optical interconnection," Appl. Phys. A 95, 1089-1100 (2009).
    [CrossRef]
  2. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects," Opt. Express 15, 11934-11941 (2007).
    [CrossRef] [PubMed]
  3. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, "Low power and compact reconfigurable multiplexing devices based on silicon microring resonators," Opt. Express 18, 9852-9858 (2010).
    [CrossRef] [PubMed]
  4. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kartner, H. I. Smith, and E. P. Ippen, "Eleven-channel second-order silicon microring-resonator filterbank with tunable channel spacing," in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMS5.
  5. M. Popovic, T. Barwicz, M. Dahlem, F. Gan, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, and F. Kartner, "Tunable, fourth-order silicon microring-resonator add-drop filters," IET Digest 123, (2007).
  6. B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, "Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator," Chin. Opt. Lett. 7, 291-295 (2009).
    [CrossRef]
  7. L. Jin, M. Li, and J. He, "Experimental investigation of waveguide sensor based on cascaded-microring resonators with Vernier effect," in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 1-2 (2010).
  8. P. Koonath, T. Indukuri, and B. Jalali, "3-D integrated Vernier filters in silicon," in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMG1.
  9. T. Chu, N. Fujioka, S. Nakamura, M. Tokushima, and M. Ishizaka, "Compact, low power consumption wavelength tunable laser with silicon photonic-wire waveguide micro-ring resonators," in 35th European Conference On Optical Communication (ECOC), 1-2 (2009).
  10. R. Boeck, N. A. F. Jaeger, and L. Chrostowski, "Experimental Demonstration of the Vernier Effect using Series-Coupled Racetrack Resonators," in 2010 International Conference on Optical MEMS & Nanophotonics (2010).
  11. D. G. Rabus, Integrated Ring Resonators: The Compendium, 1st ed. (Springer, 2007).
  12. N. Rouger, L. Chrostowski, and R. Vafaei, "Temperature Effects on Silicon-on-Insulator (SOI) Racetrack Resonators: A Coupled Analytic and 2-D Finite Difference Approach," J. Lightwave Technol. 28, 1380-1391 (2010).
    [CrossRef]
  13. H. H. Li, "Refractive index of silicon and germanium and its wavelength and temperature derivatives," J. Phys. Chem. Ref. Data 9, 561 (1980).
    [CrossRef]
  14. C. Z. Tan, and J. Arndt, "Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range," J. Phys. Chem. Solids 61, 1315-1320 (2000).
    [CrossRef]
  15. O. Schwelb, "The nature of spurious mode suppression in extended FSR microring multiplexers," Opt. Commun. 271, 424-429 (2007).
    [CrossRef]
  16. C. Chaichuay, P. P. Yupapin, and P. Saeung, "The serially coupled multiple ring resonator filters and Vernier effect," Opt. Appl. XXXIX, (2009).
  17. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol. 23, 401 (2005).
    [CrossRef]
  18. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
    [CrossRef]
  19. M. A. Popovic, E. P. Ippen, and F. X. Kartner, "Universally balanced photonic interferometers," Opt. Lett. 31, 2713-2715 (2006).
    [CrossRef] [PubMed]
  20. A. Fallahkhair, K. S. Li, and T. E. Murphy, "Vector Finite Difference Modesolver for Anisotropic Dielectric Waveguides," J. Lightwave Technol. 26, 1423-1431 (2008).
    [CrossRef]
  21. P. Dumon, "Ultra-Compact Integrated Optical Filters in Silicon-on-insulator by Means of Wafer-Scale Technology," PhD Thesis, Universiteit Gent, (2007).

2010 (2)

2009 (2)

B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, "Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator," Chin. Opt. Lett. 7, 291-295 (2009).
[CrossRef]

L. Zhang, Y. Li, M. Song, J. Yang, R. Beausoleil, and A. Willner, "Silicon microring-based signal modulation for chip-scale optical interconnection," Appl. Phys. A 95, 1089-1100 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (1)

2005 (1)

2004 (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

2000 (1)

C. Z. Tan, and J. Arndt, "Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range," J. Phys. Chem. Solids 61, 1315-1320 (2000).
[CrossRef]

1980 (1)

H. H. Li, "Refractive index of silicon and germanium and its wavelength and temperature derivatives," J. Phys. Chem. Ref. Data 9, 561 (1980).
[CrossRef]

Arndt, J.

C. Z. Tan, and J. Arndt, "Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range," J. Phys. Chem. Solids 61, 1315-1320 (2000).
[CrossRef]

Asghari, M.

Baets, R.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol. 23, 401 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Beausoleil, R.

L. Zhang, Y. Li, M. Song, J. Yang, R. Beausoleil, and A. Willner, "Silicon microring-based signal modulation for chip-scale optical interconnection," Appl. Phys. A 95, 1089-1100 (2009).
[CrossRef]

Beckx, S.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol. 23, 401 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Bienstman, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol. 23, 401 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Bogaerts, W.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol. 23, 401 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Campenhout, J. V.

Chrostowski, L.

Cohen, O.

Crnjanski, J.

Dong, P.

Dumon, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol. 23, 401 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Fallahkhair, A.

Feng, D.

Feng, N.

Ippen, E. P.

Kartner, F. X.

Krishnamoorthy, A. V.

Li, H. H.

H. H. Li, "Refractive index of silicon and germanium and its wavelength and temperature derivatives," J. Phys. Chem. Ref. Data 9, 561 (1980).
[CrossRef]

Li, K. S.

Li, Y.

L. Zhang, Y. Li, M. Song, J. Yang, R. Beausoleil, and A. Willner, "Silicon microring-based signal modulation for chip-scale optical interconnection," Appl. Phys. A 95, 1089-1100 (2009).
[CrossRef]

Liang, H.

Luyssaert, B.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol. 23, 401 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Mashanovich, G.

Michaeli, A.

Murphy, T. E.

Passaro, V. M. N.

Popovic, M. A.

Qian, W.

Reed, G. T.

Rooks, M.

Rouger, N.

Schwelb, O.

O. Schwelb, "The nature of spurious mode suppression in extended FSR microring multiplexers," Opt. Commun. 271, 424-429 (2007).
[CrossRef]

Sekaric, L.

Shafiiha, R.

Song, M.

L. Zhang, Y. Li, M. Song, J. Yang, R. Beausoleil, and A. Willner, "Silicon microring-based signal modulation for chip-scale optical interconnection," Appl. Phys. A 95, 1089-1100 (2009).
[CrossRef]

Taillaert, D.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol. 23, 401 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Tan, C. Z.

C. Z. Tan, and J. Arndt, "Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range," J. Phys. Chem. Solids 61, 1315-1320 (2000).
[CrossRef]

Thourhout, D. V.

Timotijevic, B.

Vafaei, R.

Van Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Van Thourhout, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Vlasov, Y.

Wiaux, V.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol. 23, 401 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Willner, A.

L. Zhang, Y. Li, M. Song, J. Yang, R. Beausoleil, and A. Willner, "Silicon microring-based signal modulation for chip-scale optical interconnection," Appl. Phys. A 95, 1089-1100 (2009).
[CrossRef]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Xia, F.

Yang, J.

L. Zhang, Y. Li, M. Song, J. Yang, R. Beausoleil, and A. Willner, "Silicon microring-based signal modulation for chip-scale optical interconnection," Appl. Phys. A 95, 1089-1100 (2009).
[CrossRef]

Zhang, L.

L. Zhang, Y. Li, M. Song, J. Yang, R. Beausoleil, and A. Willner, "Silicon microring-based signal modulation for chip-scale optical interconnection," Appl. Phys. A 95, 1089-1100 (2009).
[CrossRef]

Zheng, X.

Appl. Phys. A (1)

L. Zhang, Y. Li, M. Song, J. Yang, R. Beausoleil, and A. Willner, "Silicon microring-based signal modulation for chip-scale optical interconnection," Appl. Phys. A 95, 1089-1100 (2009).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

J. Lightwave Technol. (3)

J. Phys. Chem. Ref. Data (1)

H. H. Li, "Refractive index of silicon and germanium and its wavelength and temperature derivatives," J. Phys. Chem. Ref. Data 9, 561 (1980).
[CrossRef]

J. Phys. Chem. Solids (1)

C. Z. Tan, and J. Arndt, "Temperature dependence of refractive index of glassy SiO2 in the infrared wavelength range," J. Phys. Chem. Solids 61, 1315-1320 (2000).
[CrossRef]

Opt. Commun. (1)

O. Schwelb, "The nature of spurious mode suppression in extended FSR microring multiplexers," Opt. Commun. 271, 424-429 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (9)

P. Dumon, "Ultra-Compact Integrated Optical Filters in Silicon-on-insulator by Means of Wafer-Scale Technology," PhD Thesis, Universiteit Gent, (2007).

C. Chaichuay, P. P. Yupapin, and P. Saeung, "The serially coupled multiple ring resonator filters and Vernier effect," Opt. Appl. XXXIX, (2009).

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kartner, H. I. Smith, and E. P. Ippen, "Eleven-channel second-order silicon microring-resonator filterbank with tunable channel spacing," in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMS5.

M. Popovic, T. Barwicz, M. Dahlem, F. Gan, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, and F. Kartner, "Tunable, fourth-order silicon microring-resonator add-drop filters," IET Digest 123, (2007).

L. Jin, M. Li, and J. He, "Experimental investigation of waveguide sensor based on cascaded-microring resonators with Vernier effect," in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 1-2 (2010).

P. Koonath, T. Indukuri, and B. Jalali, "3-D integrated Vernier filters in silicon," in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMG1.

T. Chu, N. Fujioka, S. Nakamura, M. Tokushima, and M. Ishizaka, "Compact, low power consumption wavelength tunable laser with silicon photonic-wire waveguide micro-ring resonators," in 35th European Conference On Optical Communication (ECOC), 1-2 (2009).

R. Boeck, N. A. F. Jaeger, and L. Chrostowski, "Experimental Demonstration of the Vernier Effect using Series-Coupled Racetrack Resonators," in 2010 International Conference on Optical MEMS & Nanophotonics (2010).

D. G. Rabus, Integrated Ring Resonators: The Compendium, 1st ed. (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Theoretical drop port response of the un-optimized device illustrating the twin peaks, extended FSR, and minimum interstitial peak suppression, and (b) the main resonance peak splitting. The design parameters are m1 and m2 are 9 and 7, respectively. L1 and L2 are 127.91 μm and 99.487 μm, respectively. κ1, κ2 and κ3 are 0.35, 0.1, and 0.35, respectively. The waveguide width is 500 nm, the propagation loss is 3 dB/cm, and ng is 4.306.

Fig. 2
Fig. 2

(a) Theoretical drop port response of the optimized device illustrating large interstitial peak suppression and (b) no main resonance splitting. The design parameters are m1 and m2 are 3 and 2, respectively. L1 and L2 are 42.637 μm and 28.425 μm, respectively. κ1, κ2 and κ3 are 0.015, 0.00005, and 0.015, respectively. The waveguide width is 500 nm, the propagation loss is 3 dB/cm, and ng is 4.306.

Fig. 3
Fig. 3

SEM of (a) fabricated series-coupled racetrack resonators, and (b) coupling region.

Fig. 4
Fig. 4

(a) Experimental (red) and curve-fit (cyan) drop port response for series-coupled racetrack resonators, (b) shows the minimal main resonance splitting (zoom in of Fig. 3a), and (c) shows the straight waveguide transmission response used for calibration.

Fig. 5
Fig. 5

Experimental drop port response for single racetrack resonators with a radius of 6.545 μm (red) and 4.225 μm (black).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T F drop = i ( κ 1 κ 2 κ 3 X 1 X 2 ) 1 / 2 1 t 1 t 2 X 1 t 2 t 3 X 2 + t 1 t 3 X 1 X 2 ,
n g ( λ , T ) = n eff ( λ , T ) λ δ n eff ( λ , T ) δ λ ,
F S R extended = m 1 F S R 1 = m 2 F S R 2 ,
m 2 m 1 = L 2 L 1 .

Metrics