Abstract

Electro-optic polymer-clad silicon slot waveguides have recently been used to build a new class of modulators, that exhibit very high bandwidths and extremely low drive voltages. A key step towards making these devices practical will be lowering optical insertion losses. We report on the first measurements of low-loss waveguides that are geometrically suitable for high bandwidth slot waveguide modulators: a strip-loaded slot waveguide. Waveguide loss for undoped waveguides of 6.5 ± 0.2 dB/cm was achieved with 40 nm thick strip-loading, with the full silicon thickness around 220 nm and a slot size of 200 nm, for wavelengths near 1550 nm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  2. M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15(13), 8401–8410 (2007).
    [CrossRef] [PubMed]
  3. W. Freude, J. Leuthold, L. Alloatti, T. Vallaitis, D. Korn, R. Palmer, C. Koos, J. Brosi, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, B. Breiten, F. Diederich, A. Barklund, R. Dinu, and J. Wieland, “100 Gbit/s electro-optic modulator and 56 Gbit/s wavelength converter for DQPSK data in silicon-organic hybrid (SOH) technology,” Photonics Society Summer Topical Meeting Series, 2010 IEEE, (Academic, Playa del Carmen, 2010), pp 96 – 97.
  4. L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, W. Bogaerts, P. Dumon, and R. Baets, “Silicon High-Speed Electro-Optic Modulator,” in Proceedings of Group IV Photonics, (Academic, Beijing, China, 2010), ThC2.
  5. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
    [CrossRef]
  6. G. Wang, T. Baehr-Jones, M. Hochberg, and A. Scherer, “Design and fabrication of segmented, slotted waveguides for electro-optic modulation,” Appl. Phys. Lett. 91(14), 143109 (2007).
    [CrossRef]
  7. J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
    [CrossRef]
  8. C. Koos, J. Brosi, M. Waldow, W. Freude, and J. Leuthold, “Silicon-on-insulator modulators for next-generation 100 Gbit/s-Ethernet”, Proc. 33th European Conf. Opt. Commun, (Academic, Berlin, Germany, 2007), Paper P056.
  9. J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).
    [CrossRef]
  10. ePIXFab Technology Paper, “LETI_05 Flex process” (2010). http://www.epixfab.eu/uploads/media/LETI_05_technical_flex.pdf
  11. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  12. H. F. Okorn-Schmidt, “Characterization of silicon surface preparation processes for advanced gate dielectrics,” IBM J. Res. Develop. 43(3), 351–365 (1999).
    [CrossRef]
  13. S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices 3rd edition, (Wiley-Interscience, 2006), Chap. 3.
  14. FemSIM software, RSOFT Design Inc. http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=FemSIM
  15. J. Luo, X.-H. Zhou, and A. K.-Y. Jen, “Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials,” J. Mater. Chem. 19(40), 7410–7424 (2009).
    [CrossRef]
  16. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
    [CrossRef] [PubMed]
  17. S. Wolf, and R. N. Tauber, Silicon Processing for VLSI Era Volume 1 – Processing Technology 2nd edition, (Lattice Press, 2000), Chap. 8.
  18. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and Devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
    [CrossRef]
  19. MicroChem NANOTM PMMA and Copolymer datasheet. http://www.microchem.com/products/pdf/PMMA_Data_Sheet.pdf
  20. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupling for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
    [CrossRef]
  21. FullWAVE software, RSOFT Design Inc. http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=FullWAVE
  22. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing 2nd edition, (Cambridge University Press, 1992), Chap. 15.
  23. J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18(16), 16902–16928 (2010).
    [CrossRef] [PubMed]

2010 (2)

2009 (3)

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[CrossRef]

J. Luo, X.-H. Zhou, and A. K.-Y. Jen, “Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials,” J. Mater. Chem. 19(40), 7410–7424 (2009).
[CrossRef]

2008 (1)

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[CrossRef]

2007 (2)

G. Wang, T. Baehr-Jones, M. Hochberg, and A. Scherer, “Design and fabrication of segmented, slotted waveguides for electro-optic modulation,” Appl. Phys. Lett. 91(14), 143109 (2007).
[CrossRef]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15(13), 8401–8410 (2007).
[CrossRef] [PubMed]

2004 (1)

2002 (2)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and Devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupling for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

1999 (1)

H. F. Okorn-Schmidt, “Characterization of silicon surface preparation processes for advanced gate dielectrics,” IBM J. Res. Develop. 43(3), 351–365 (1999).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Almeida, V. R.

Baehr-Jones, T.

Baets, R.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupling for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Barrios, C. A.

Benight, S.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Biaggio, I.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[CrossRef]

Bienstman, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupling for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Bogaerts, W.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupling for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Bojko, R.

Brosi, J.-M.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[CrossRef]

Bruns, J.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Dalton, L.

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and Devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

Davies, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[CrossRef]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupling for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Di Falco, A.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Diederich, F.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[CrossRef]

Ding, R.

Dumon, P.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[CrossRef]

Eich, M.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Fedeli, J.-M.

Fournier, M.

Frank, B.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[CrossRef]

Freude, W.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[CrossRef]

Hampe, J.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Hochberg, M.

Huang, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[CrossRef]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15(13), 8401–8410 (2007).
[CrossRef] [PubMed]

Huang, S.

Jen, A.

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[CrossRef] [PubMed]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[CrossRef]

Jen, A. K.-Y.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

J. Luo, X.-H. Zhou, and A. K.-Y. Jen, “Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials,” J. Mater. Chem. 19(40), 7410–7424 (2009).
[CrossRef]

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and Devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

Kim, T. D.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[CrossRef]

Koos, C.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[CrossRef]

Krauss, T. F.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupling for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Leuthold, J.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[CrossRef]

Lipson, M.

Liu, Y.

Luo, J.

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18(15), 15618–15623 (2010).
[CrossRef] [PubMed]

J. Luo, X.-H. Zhou, and A. K.-Y. Jen, “Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials,” J. Mater. Chem. 19(40), 7410–7424 (2009).
[CrossRef]

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[CrossRef]

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and Devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupling for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Okorn-Schmidt, H. F.

H. F. Okorn-Schmidt, “Characterization of silicon surface preparation processes for advanced gate dielectrics,” IBM J. Res. Develop. 43(3), 351–365 (1999).
[CrossRef]

Penkov, B.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[CrossRef]

Petrov, A.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Scherer, A.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[CrossRef]

G. Wang, T. Baehr-Jones, M. Hochberg, and A. Scherer, “Design and fabrication of segmented, slotted waveguides for electro-optic modulation,” Appl. Phys. Lett. 91(14), 143109 (2007).
[CrossRef]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15(13), 8401–8410 (2007).
[CrossRef] [PubMed]

Scimeca, M. L.

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Sullivan, P.

Taillaert, D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupling for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Takayesu, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[CrossRef]

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupling for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupling for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Wang, G.

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15(13), 8401–8410 (2007).
[CrossRef] [PubMed]

G. Wang, T. Baehr-Jones, M. Hochberg, and A. Scherer, “Design and fabrication of segmented, slotted waveguides for electro-optic modulation,” Appl. Phys. Lett. 91(14), 143109 (2007).
[CrossRef]

Witzens, J.

Wülbern, J. H.

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

Xu, Q. F.

Zhou, X.-H.

J. Luo, X.-H. Zhou, and A. K.-Y. Jen, “Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials,” J. Mater. Chem. 19(40), 7410–7424 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: Materials, processing, and Devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[CrossRef]

G. Wang, T. Baehr-Jones, M. Hochberg, and A. Scherer, “Design and fabrication of segmented, slotted waveguides for electro-optic modulation,” Appl. Phys. Lett. 91(14), 143109 (2007).
[CrossRef]

J. H. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009).
[CrossRef]

IBM J. Res. Develop. (1)

H. F. Okorn-Schmidt, “Characterization of silicon surface preparation processes for advanced gate dielectrics,” IBM J. Res. Develop. 43(3), 351–365 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupling for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

J. Mater. Chem. (1)

J. Luo, X.-H. Zhou, and A. K.-Y. Jen, “Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials,” J. Mater. Chem. 19(40), 7410–7424 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. IEEE (1)

J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology-A Platform for Practical Nonlinear Optics,” Proc. IEEE 97(7), 1304–1316 (2009).
[CrossRef]

Other (10)

ePIXFab Technology Paper, “LETI_05 Flex process” (2010). http://www.epixfab.eu/uploads/media/LETI_05_technical_flex.pdf

W. Freude, J. Leuthold, L. Alloatti, T. Vallaitis, D. Korn, R. Palmer, C. Koos, J. Brosi, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, B. Breiten, F. Diederich, A. Barklund, R. Dinu, and J. Wieland, “100 Gbit/s electro-optic modulator and 56 Gbit/s wavelength converter for DQPSK data in silicon-organic hybrid (SOH) technology,” Photonics Society Summer Topical Meeting Series, 2010 IEEE, (Academic, Playa del Carmen, 2010), pp 96 – 97.

L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, W. Bogaerts, P. Dumon, and R. Baets, “Silicon High-Speed Electro-Optic Modulator,” in Proceedings of Group IV Photonics, (Academic, Beijing, China, 2010), ThC2.

C. Koos, J. Brosi, M. Waldow, W. Freude, and J. Leuthold, “Silicon-on-insulator modulators for next-generation 100 Gbit/s-Ethernet”, Proc. 33th European Conf. Opt. Commun, (Academic, Berlin, Germany, 2007), Paper P056.

S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices 3rd edition, (Wiley-Interscience, 2006), Chap. 3.

FemSIM software, RSOFT Design Inc. http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=FemSIM

S. Wolf, and R. N. Tauber, Silicon Processing for VLSI Era Volume 1 – Processing Technology 2nd edition, (Lattice Press, 2000), Chap. 8.

MicroChem NANOTM PMMA and Copolymer datasheet. http://www.microchem.com/products/pdf/PMMA_Data_Sheet.pdf

FullWAVE software, RSOFT Design Inc. http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=FullWAVE

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing 2nd edition, (Cambridge University Press, 1992), Chap. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Geometry of strip-loaded slot waveguide. The waveguide has a 200 nm width slot and 230 nm width arm, the silicon height is 220 nm while the strip-loading is 60 nm thick. The mode is calculated with ncladding = 1.5, and the |Ex| component of TE0 mode is overlaid with the geometry; (b) SEM micrograph of the cross-section of a fabricated waveguide.

Fig. 2
Fig. 2

Dispersion diagram for the first 2 modes (TE0 and TE1) of a strip-loaded slot waveguide with 230 nm wide arms, 200 nm wide slot and 70 nm thick strip-loading, the cladding material refractive index is assumed to be 1.5. Single-mode wavelength range is marked. The insets show the well-guided TE0 mode (|Ex| is shown) inside the single-mode range and the near-cutoff TE1 mode (|Ex| is shown) at the edge of single-mode range.

Fig. 3
Fig. 3

Process flow: (a) start with 80 nm HTO on top of SOI; (b) 1st photolithography patterns the waveguide arms; (c) 1st dry etching etches through the hardmask and partially remove silicon, ellipsometry measurement after this step; (d) 2nd photolithography patterns the strip-loading; (e) 2nd dry etching removes silicon inside the slot and cut strip-loading; (f) thermal oxide smoothes the sidewall; (g) strip the remaining hardmask and the thermal oxide, CDSEM after this step; (h) final oxidation serves as passivation. The final step of the PMMA spin-coating is not shown.

Fig. 4
Fig. 4

(a) Optical micrograph showing the layout of a group of strip-loaded slot waveguide runouts of different lengths; (b) SEM micrograph showing the stack of waveguide, buried-oxide layer and silicon subsrate; (c) SEM micrograph of the ridge waveguide to strip-loaded slot waveguide transition region.

Fig. 5
Fig. 5

Linear regression of peak output optical power vs. waveguide lengths for (a) chip 1 and (b) for chip 4; Spectrum and quadratic function fitting (the fitting used the data of only a section of the spectrum that centers at the peak response wavelength and span 40 nm): (c) chip1 and (d) chip4. The cladding material refarctive index is ~1.5.

Tables (1)

Tables Icon

Table 1 Summary of waveguide loss and sample information

Metrics