Abstract

We report high efficiency continuous wave laser oscillations at 1063.6 nm from an ultrafast laser written Nd3+:GdVO4 channel waveguide under the 808 nm optical excitation. A record 17 mm·s−1 writing speed was used while the low propagation loss of the waveguide (~0.5 dB·cm−1) enabled laser performance with a threshold pump power as low as 52 mW and a near to quantum defect limited laser slope efficiency of 70%.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4,GdVO4,and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
    [CrossRef]
  2. V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15(3), 1052–1060 (1998).
    [CrossRef]
  3. H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, Q. C. Wang, and Y. T. Chow, ““Investigations on the growth and laser properties of Nd:GdVO4 single crystal,” C. Q. Wang, and Y. T. Chow,” Cryst. Res. Technol. 33(5), 801–806 (1998).
    [CrossRef]
  4. Y. F. Chen, “Efficient 1521-nm Nd:GdVO4 Raman laser,” Opt. Lett. 29(22), 2632–2634 (2004).
    [CrossRef] [PubMed]
  5. J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
    [CrossRef]
  6. J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
    [CrossRef]
  7. M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
    [CrossRef]
  8. M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3. μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86(15), 151108 (2005).
    [CrossRef]
  9. C. Jia, X. Wang, K. Wang, H. Ma, and R. Nie, “Characterization of optical waveguide in Nd: GdVO4 by triple-energy oxygen ion implantation,” Appl. Surf. Sci. 253(24), 9311–9314 (2007).
    [CrossRef]
  10. H. Li, J. Wang, H. Zhang, G. Yu, X. Wang, L. Fang, M. Shen, Z. Ning, J. Yang, and S. Li, “Nd:GdVO4 thin films grown on LaGaSiO (LGS) and sapphire substrates by pulsed laser deposition properties,” J. Cryst. Growth 281(2-4), 426–431 (2005).
    [CrossRef]
  11. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
    [CrossRef]
  12. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
    [CrossRef] [PubMed]
  13. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
    [CrossRef]
  14. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
    [CrossRef]
  15. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
    [CrossRef]
  16. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
    [CrossRef]
  17. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Hüber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
    [CrossRef] [PubMed]
  18. J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
    [CrossRef]
  19. Y. Tan and F. Chen, “J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
    [CrossRef]
  20. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17(25), 22417–22422 (2009).
    [CrossRef]
  21. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
    [CrossRef]
  22. Rsoft Design Group, Computer software BEAMPROP, http://www.rsoftdesign.com
  23. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
    [CrossRef]

2010 (3)

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Hüber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

Y. Tan and F. Chen, “J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
[CrossRef]

2009 (4)

F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17(25), 22417–22422 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[CrossRef]

2008 (2)

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[CrossRef]

2007 (5)

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
[CrossRef] [PubMed]

J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

C. Jia, X. Wang, K. Wang, H. Ma, and R. Nie, “Characterization of optical waveguide in Nd: GdVO4 by triple-energy oxygen ion implantation,” Appl. Surf. Sci. 253(24), 9311–9314 (2007).
[CrossRef]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[CrossRef]

2005 (2)

H. Li, J. Wang, H. Zhang, G. Yu, X. Wang, L. Fang, M. Shen, Z. Ning, J. Yang, and S. Li, “Nd:GdVO4 thin films grown on LaGaSiO (LGS) and sapphire substrates by pulsed laser deposition properties,” J. Cryst. Growth 281(2-4), 426–431 (2005).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3. μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86(15), 151108 (2005).
[CrossRef]

2004 (1)

2001 (1)

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

1999 (1)

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[CrossRef]

1998 (3)

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4,GdVO4,and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[CrossRef]

V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15(3), 1052–1060 (1998).
[CrossRef]

H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, Q. C. Wang, and Y. T. Chow, ““Investigations on the growth and laser properties of Nd:GdVO4 single crystal,” C. Q. Wang, and Y. T. Chow,” Cryst. Res. Technol. 33(5), 801–806 (1998).
[CrossRef]

Bagaev, S. N.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Bain, F. M.

Barnes, J. C.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Barton, J. S.

Benayas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Bookey, H. T.

Brown, C. T. A.

Calmano, T.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Hüber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

Campbell, S.

Cantelar, E.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3. μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86(15), 151108 (2005).
[CrossRef]

Chai, B. H. T.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4,GdVO4,and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[CrossRef]

Chen, F.

Y. Tan and F. Chen, “J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
[CrossRef]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[CrossRef]

Chen, Y. F.

Chow, Y. T.

H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, Q. C. Wang, and Y. T. Chow, ““Investigations on the growth and laser properties of Nd:GdVO4 single crystal,” C. Q. Wang, and Y. T. Chow,” Cryst. Res. Technol. 33(5), 801–806 (1998).
[CrossRef]

Chyba, T. H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Dawes, J.

H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, Q. C. Wang, and Y. T. Chow, ““Investigations on the growth and laser properties of Nd:GdVO4 single crystal,” C. Q. Wang, and Y. T. Chow,” Cryst. Res. Technol. 33(5), 801–806 (1998).
[CrossRef]

Domenech, M.

M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3. μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86(15), 151108 (2005).
[CrossRef]

Eason, R. W.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

Eichler, H. J.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Fang, L.

H. Li, J. Wang, H. Zhang, G. Yu, X. Wang, L. Fang, M. Shen, Z. Ning, J. Yang, and S. Li, “Nd:GdVO4 thin films grown on LaGaSiO (LGS) and sapphire substrates by pulsed laser deposition properties,” J. Cryst. Growth 281(2-4), 426–431 (2005).
[CrossRef]

Fender, A.

Flores-Romero, E.

M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3. μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86(15), 151108 (2005).
[CrossRef]

Fornasiero, L.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4,GdVO4,and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[CrossRef]

Gad, G. M. A.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Grivas, C.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

Hirao, K.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[CrossRef]

Huber, G.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4,GdVO4,and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[CrossRef]

V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15(3), 1052–1060 (1998).
[CrossRef]

Hüber, G.

Jaque, D.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Jaque, F.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Jensen, T.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4,GdVO4,and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[CrossRef]

V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15(3), 1052–1060 (1998).
[CrossRef]

Jia, C.

C. Jia, X. Wang, K. Wang, H. Ma, and R. Nie, “Characterization of optical waveguide in Nd: GdVO4 by triple-energy oxygen ion implantation,” Appl. Surf. Sci. 253(24), 9311–9314 (2007).
[CrossRef]

Jiang, M.

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[CrossRef]

Jiao, Y.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[CrossRef]

Juodkazis, S.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Kar, A. K.

Kouta, H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Kück, S.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4,GdVO4,and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[CrossRef]

Kuleshov, N. V.

Kuwano, Y.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Lagatsky, A. A.

Lamela, J.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Laversenne, L.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

Li, H.

H. Li, J. Wang, H. Zhang, G. Yu, X. Wang, L. Fang, M. Shen, Z. Ning, J. Yang, and S. Li, “Nd:GdVO4 thin films grown on LaGaSiO (LGS) and sapphire substrates by pulsed laser deposition properties,” J. Cryst. Growth 281(2-4), 426–431 (2005).
[CrossRef]

Li, S.

H. Li, J. Wang, H. Zhang, G. Yu, X. Wang, L. Fang, M. Shen, Z. Ning, J. Yang, and S. Li, “Nd:GdVO4 thin films grown on LaGaSiO (LGS) and sapphire substrates by pulsed laser deposition properties,” J. Cryst. Growth 281(2-4), 426–431 (2005).
[CrossRef]

Li, X. S.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[CrossRef]

Lifante, G.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3. μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86(15), 151108 (2005).
[CrossRef]

Liu, J.

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[CrossRef]

Lu, J.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Lu, Q. M.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[CrossRef]

Ma, H.

C. Jia, X. Wang, K. Wang, H. Ma, and R. Nie, “Characterization of optical waveguide in Nd: GdVO4 by triple-energy oxygen ion implantation,” Appl. Surf. Sci. 253(24), 9311–9314 (2007).
[CrossRef]

Ma, H. J.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[CrossRef]

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

Macpherson, W. N.

Meng, X.

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[CrossRef]

Meng, X. L.

H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, Q. C. Wang, and Y. T. Chow, ““Investigations on the growth and laser properties of Nd:GdVO4 single crystal,” C. Q. Wang, and Y. T. Chow,” Cryst. Res. Technol. 33(5), 801–806 (1998).
[CrossRef]

Meyn, J. P.

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[CrossRef]

Miura, K.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[CrossRef]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[CrossRef]

Murai, T.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Nie, R.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[CrossRef]

C. Jia, X. Wang, K. Wang, H. Ma, and R. Nie, “Characterization of optical waveguide in Nd: GdVO4 by triple-energy oxygen ion implantation,” Appl. Surf. Sci. 253(24), 9311–9314 (2007).
[CrossRef]

Ning, Z.

H. Li, J. Wang, H. Zhang, G. Yu, X. Wang, L. Fang, M. Shen, Z. Ning, J. Yang, and S. Li, “Nd:GdVO4 thin films grown on LaGaSiO (LGS) and sapphire substrates by pulsed laser deposition properties,” J. Cryst. Growth 281(2-4), 426–431 (2005).
[CrossRef]

Noginov, M. A.

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Ostroumov, V.

Petermann, K.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Hüber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Pollnau, M.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

Psaila, N. D.

Qiu, J.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[CrossRef]

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Reid, D. T.

Rodenas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Ródenas, A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Roso, L.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Shao, Z.

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[CrossRef]

Shen, M.

H. Li, J. Wang, H. Zhang, G. Yu, X. Wang, L. Fang, M. Shen, Z. Ning, J. Yang, and S. Li, “Nd:GdVO4 thin films grown on LaGaSiO (LGS) and sapphire substrates by pulsed laser deposition properties,” J. Cryst. Growth 281(2-4), 426–431 (2005).
[CrossRef]

Shepherd, D. P.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

Sibbett, W.

Siebenmorgen, J.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Hüber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Tan, Y.

Y. Tan and F. Chen, “J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
[CrossRef]

Thomson, R. R.

Torchia, G. A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Tünnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Ueda, K.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Vázquez, G. V.

M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3. μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86(15), 151108 (2005).
[CrossRef]

Wang, J.

H. Li, J. Wang, H. Zhang, G. Yu, X. Wang, L. Fang, M. Shen, Z. Ning, J. Yang, and S. Li, “Nd:GdVO4 thin films grown on LaGaSiO (LGS) and sapphire substrates by pulsed laser deposition properties,” J. Cryst. Growth 281(2-4), 426–431 (2005).
[CrossRef]

Wang, K.

C. Jia, X. Wang, K. Wang, H. Ma, and R. Nie, “Characterization of optical waveguide in Nd: GdVO4 by triple-energy oxygen ion implantation,” Appl. Surf. Sci. 253(24), 9311–9314 (2007).
[CrossRef]

Wang, K. M.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[CrossRef]

Wang, L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[CrossRef]

Wang, L. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[CrossRef]

Wang, P.

H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, Q. C. Wang, and Y. T. Chow, ““Investigations on the growth and laser properties of Nd:GdVO4 single crystal,” C. Q. Wang, and Y. T. Chow,” Cryst. Res. Technol. 33(5), 801–806 (1998).
[CrossRef]

Wang, Q. C.

H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, Q. C. Wang, and Y. T. Chow, ““Investigations on the growth and laser properties of Nd:GdVO4 single crystal,” C. Q. Wang, and Y. T. Chow,” Cryst. Res. Technol. 33(5), 801–806 (1998).
[CrossRef]

Wang, X.

C. Jia, X. Wang, K. Wang, H. Ma, and R. Nie, “Characterization of optical waveguide in Nd: GdVO4 by triple-energy oxygen ion implantation,” Appl. Surf. Sci. 253(24), 9311–9314 (2007).
[CrossRef]

H. Li, J. Wang, H. Zhang, G. Yu, X. Wang, L. Fang, M. Shen, Z. Ning, J. Yang, and S. Li, “Nd:GdVO4 thin films grown on LaGaSiO (LGS) and sapphire substrates by pulsed laser deposition properties,” J. Cryst. Growth 281(2-4), 426–431 (2005).
[CrossRef]

Wang, X. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[CrossRef]

Wilkinson, J. S.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

Yang, J.

H. Li, J. Wang, H. Zhang, G. Yu, X. Wang, L. Fang, M. Shen, Z. Ning, J. Yang, and S. Li, “Nd:GdVO4 thin films grown on LaGaSiO (LGS) and sapphire substrates by pulsed laser deposition properties,” J. Cryst. Growth 281(2-4), 426–431 (2005).
[CrossRef]

Yu, G.

H. Li, J. Wang, H. Zhang, G. Yu, X. Wang, L. Fang, M. Shen, Z. Ning, J. Yang, and S. Li, “Nd:GdVO4 thin films grown on LaGaSiO (LGS) and sapphire substrates by pulsed laser deposition properties,” J. Cryst. Growth 281(2-4), 426–431 (2005).
[CrossRef]

Zhang, H.

H. Li, J. Wang, H. Zhang, G. Yu, X. Wang, L. Fang, M. Shen, Z. Ning, J. Yang, and S. Li, “Nd:GdVO4 thin films grown on LaGaSiO (LGS) and sapphire substrates by pulsed laser deposition properties,” J. Cryst. Growth 281(2-4), 426–431 (2005).
[CrossRef]

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[CrossRef]

Zhang, H. J.

H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, Q. C. Wang, and Y. T. Chow, ““Investigations on the growth and laser properties of Nd:GdVO4 single crystal,” C. Q. Wang, and Y. T. Chow,” Cryst. Res. Technol. 33(5), 801–806 (1998).
[CrossRef]

Zhang, H. Z.

H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, Q. C. Wang, and Y. T. Chow, ““Investigations on the growth and laser properties of Nd:GdVO4 single crystal,” C. Q. Wang, and Y. T. Chow,” Cryst. Res. Technol. 33(5), 801–806 (1998).
[CrossRef]

Zhu, L.

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[CrossRef]

H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, Q. C. Wang, and Y. T. Chow, ““Investigations on the growth and laser properties of Nd:GdVO4 single crystal,” C. Q. Wang, and Y. T. Chow,” Cryst. Res. Technol. 33(5), 801–806 (1998).
[CrossRef]

Appl. Phys. B (5)

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4,GdVO4,and Sr5(PO4)3F,” Appl. Phys. B 67(5), 549–553 (1998).
[CrossRef]

J. Liu, Z. Shao, H. Zhang, X. Meng, L. Zhu, and M. Jiang, “Diode-laser-array end-pumped 14.3-W CW Nd:GdVO4 solid-state laser at 1.06 μm,” Appl. Phys. B 69(3), 241–243 (1999).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Tan and F. Chen, “J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97, 031119 (2010).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3. μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86(15), 151108 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

C. Jia, X. Wang, K. Wang, H. Ma, and R. Nie, “Characterization of optical waveguide in Nd: GdVO4 by triple-energy oxygen ion implantation,” Appl. Surf. Sci. 253(24), 9311–9314 (2007).
[CrossRef]

Cryst. Res. Technol. (1)

H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, Q. C. Wang, and Y. T. Chow, ““Investigations on the growth and laser properties of Nd:GdVO4 single crystal,” C. Q. Wang, and Y. T. Chow,” Cryst. Res. Technol. 33(5), 801–806 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

J. Appl. Phys. (2)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101 (2009).
[CrossRef]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[CrossRef]

J. Cryst. Growth (1)

H. Li, J. Wang, H. Zhang, G. Yu, X. Wang, L. Fang, M. Shen, Z. Ning, J. Yang, and S. Li, “Nd:GdVO4 thin films grown on LaGaSiO (LGS) and sapphire substrates by pulsed laser deposition properties,” J. Cryst. Growth 281(2-4), 426–431 (2005).
[CrossRef]

J. Non-Cryst. Solids (1)

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354(12-13), 1100–1111 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

Opt. Commun. (1)

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (1)

Rsoft Design Group, Computer software BEAMPROP, http://www.rsoftdesign.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic plot of the experimental setup for the waveguide laser generation. WP1 and WP2: waveplate; GTP: Glan Taylor prism; MO: microscope objective lens ( × 20); CL: convex lens; M1 and M2: laser cavity mirrors adhered to the two end facets of the sample; DB: dichroic beamsplitter; λp and λL: pump and generated laser beam.

Fig. 2
Fig. 2

(a) μ-Raman spectra showing the SRS-active phonon modes of the waveguide core and of the non irradiated crystal (b) Microscope transmission image of the waveguide cross-section with the core labeled W, and (c) horizontal Raman-shift cross section for the A1g1) mode at 881.29 cm−1 showing the clear blue-shift characteristic of compressed regions.

Fig. 3
Fig. 3

(a) the measured near-field intensity distribution of waveguide mode at 780 nm, (b) the reconstructed refractive index distribution at 780 nm, and (c) the calculated modal profile.

Fig. 4
Fig. 4

The cw laser oscillation spectra from the fs-laser written Nd:GdVO4 channel waveguide after pumping at 808 nm above the pumping threshold. The inset shows the measured near field distribution of the output laser beam at 1063.6 nm.

Fig. 5
Fig. 5

The continuous wave waveguide laser output power at 1063.6 nm as a function of the launched pump power at 808 nm with (blue) and without mirrors (red), respectively.

Metrics