Abstract

A stabilized interferometric displacement measurement system, which is suitable for on-line measurement and is endowed with large measurement range and high resolution, is proposed. The system is stabilized by a feedback loop which compensates the influences induced by the environmental disturbances and makes the system stabile enough for on-line measurement. Two different wavelengths are working simultaneously in the system. The measurement range which is determined by the synthetic-wavelength interferometric signal is expanded to the order of millimeter, while the measurement resolution which is determined by one of the single-wavelength interferometric signal is the order of sub-nanometer.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. Hand, T. A. Carolan, J. S. Barton, and J. D. C. Jones, “Profile measurement of optically rough surfaces by fiber-optic interferometry,” Opt. Lett. 18(16), 1361–1363 (1993).
    [CrossRef] [PubMed]
  2. D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt. 19(17), 2926–2929 (1980).
    [CrossRef] [PubMed]
  3. D. Lin, X. Jiang, F. Xie, W. Zhang, L. Zhang, and I. Bennion, “High stability multiplexed fiber interferometer and its application on absolute displacement measurement and on-line surface metrology,” Opt. Express 12(23), 5729–5734 (2004).
    [CrossRef] [PubMed]
  4. M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A Phys. 88(1), 41–46 (2001).
    [CrossRef]
  5. H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
    [CrossRef]
  6. B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys. 79(1), 1–7 (2000).
    [CrossRef]
  7. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [CrossRef] [PubMed]
  8. W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express 18(9), 9006–9014 (2010).
    [CrossRef] [PubMed]

2010 (1)

2008 (1)

2004 (1)

2003 (1)

H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
[CrossRef]

2001 (1)

M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A Phys. 88(1), 41–46 (2001).
[CrossRef]

2000 (1)

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys. 79(1), 1–7 (2000).
[CrossRef]

1993 (1)

1980 (1)

Barton, J. S.

Bennion, I.

Carolan, T. A.

Chung, Y.

Dandridge, A.

Gerhard, E.

M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A Phys. 88(1), 41–46 (2001).
[CrossRef]

Hall, C. J.

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys. 79(1), 1–7 (2000).
[CrossRef]

Hand, D. P.

Hwang, D.

Jackson, D. A.

Jiang, M.

M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A Phys. 88(1), 41–46 (2001).
[CrossRef]

Jiang, X.

Jones, J. D. C.

Lin, D.

Meggitt, B. T.

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys. 79(1), 1–7 (2000).
[CrossRef]

Metivier, V.

H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
[CrossRef]

Moon, D. S.

Moon, S.

Morteau, E.

H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
[CrossRef]

Nguyen, L. V.

Niezrecki, C.

Ouisse, E.

H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
[CrossRef]

Priest, R.

Seat, H. C.

H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
[CrossRef]

Tian, Y.

Tveten, A. B.

Wang, W.

Wang, X.

Weir, K.

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys. 79(1), 1–7 (2000).
[CrossRef]

Wu, N.

Xie, F.

Zhang, L.

Zhang, W.

Appl. Opt. (1)

Meas. Sci. Technol. (1)

H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Sens. Actuators A Phys. (2)

M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A Phys. 88(1), 41–46 (2001).
[CrossRef]

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys. 79(1), 1–7 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The principle of the measurement system.

Fig. 2
Fig. 2

The schematic diagram of the feedback loop circuit.

Fig. 3
Fig. 3

The interferometric signals are fluctuating when the feedback loop is out of operation.

Fig. 4
Fig. 4

The interferometric signals before and after the feedback loop is turned on.

Fig. 5
Fig. 5

The single-wavelength interferometeric signal and the synthetic-wavelength interferometric signal while modulating the optical path difference periodically.

Fig. 6
Fig. 6

The zoom of Fig. 5 in the area of the top of synthetic-wavelength interferometric signal.

Fig. 7
Fig. 7

The Fourier Transform of the signal from PD2.

Fig. 8
Fig. 8

The displacement measurement results.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

i P D 1 = i 0 [ 1 + k cos ( ϕ d 1 + ϕ S 1 ) ] + i 0 [ 1 + k cos ( ϕ d 2 + ϕ S 2 ) ] ,
i P D 2 = i 0 [ 1 + k cos ( ϕ d 2 + ϕ S 2 ) ] ,
u P D 1 ( 1 ) = u 0 [ 1 + k cos ( ϕ d 1 + ϕ S 1 ) ] + u 0 [ 1 + k cos ( ϕ d 2 + ϕ S 2 ) ] ,
u P D 2 ( 1 ) = u 0 [ 1 + k cos ( ϕ d 2 + ϕ S 2 ) ] ,
u P D 2 ( 2 ) = K sin ( ϕ d 2 + ϕ S 2 ) ,
u P D 2 ( 3 ) = K 1 cos ( ϕ d 2 + ϕ S 2 ) ,
u P D 2 ( 4 ) = K 2 Δ ϕ ,
u P D 1 ( 2 ) = u 0 [ 1 + k cos λ 2 λ 1 π 2 ] + u 0 ,
u P D 2 ( 5 ) = u 0 .
u P D 1 ( 3 ) = u 0 { 1 + k cos [ λ 2 λ 1 π 2 + 2 Δ L λ 1 2 π ] } + u 0 { 1 + k cos [ π 2 + 2 Δ L λ 2 2 π ] } ,
u P D 2 ( 6 ) = u 0 { 1 + k cos [ π 2 + 2 Δ L λ 2 2 π ] } .
u P D 1 ( 4 ) = u 0 { 1 + k cos [ λ 2 λ 1 π 2 + 2 ( Δ L c t ) λ 1 2 π ] } + u 0 { 1 + k cos [ π 2 + 2 ( Δ L c t ) λ 2 2 π ] } ,
u P D 2 ( 7 ) = u 0 { 1 + k cos [ π 2 + 2 ( Δ L c t ) λ 2 2 π ] } ,
u P D 1 ( 5 ) = 2 u 0 + u 0 k cos 1 2 [ λ 2 λ 1 λ 1 π 2 + λ 2 λ 1 λ 1 λ 2 4 π ( Δ L c t ) ] cos 1 2 [ λ 2 + λ 1 λ 1 π 2 + λ 2 + λ 1 λ 1 λ 2 4 π ( Δ L c t ) ] .
1 2 [ λ 2 λ 1 λ 1 π 2 + λ 2 λ 1 λ 1 λ 2 4 π ( Δ L c t ) ] = π ,
c t 0 = Δ L λ 1 λ 2 2 ( λ 2 λ 1 ) + λ 2 8 .

Metrics