Abstract

A stabilized interferometric displacement measurement system, which is suitable for on-line measurement and is endowed with large measurement range and high resolution, is proposed. The system is stabilized by a feedback loop which compensates the influences induced by the environmental disturbances and makes the system stabile enough for on-line measurement. Two different wavelengths are working simultaneously in the system. The measurement range which is determined by the synthetic-wavelength interferometric signal is expanded to the order of millimeter, while the measurement resolution which is determined by one of the single-wavelength interferometric signal is the order of sub-nanometer.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology

Dejiao Lin, Xiangqian Jiang, Fang Xie, Wei Zhang, Lin Zhang, and Ian Bennion
Opt. Express 12(23) 5729-5734 (2004)

Precision displacement measurement by active laser heterodyne interferometry

Yi-Jyh Lin and Ci-Ling Pan
Appl. Opt. 30(13) 1648-1652 (1991)

Development of a laser synthetic wavelength interferometer for large displacement measurement with nanometer accuracy

Benyong Chen, Liping Yan, Xiguo Yao, Tao Yang, Dacheng Li, Wenjun Dong, Chaorong Li, and Weihua Tang
Opt. Express 18(3) 3000-3010 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. P. Hand, T. A. Carolan, J. S. Barton, and J. D. C. Jones, “Profile measurement of optically rough surfaces by fiber-optic interferometry,” Opt. Lett. 18(16), 1361–1363 (1993).
    [Crossref] [PubMed]
  2. D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt. 19(17), 2926–2929 (1980).
    [Crossref] [PubMed]
  3. D. Lin, X. Jiang, F. Xie, W. Zhang, L. Zhang, and I. Bennion, “High stability multiplexed fiber interferometer and its application on absolute displacement measurement and on-line surface metrology,” Opt. Express 12(23), 5729–5734 (2004).
    [Crossref] [PubMed]
  4. M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A Phys. 88(1), 41–46 (2001).
    [Crossref]
  5. H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
    [Crossref]
  6. B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys. 79(1), 1–7 (2000).
    [Crossref]
  7. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [Crossref] [PubMed]
  8. W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express 18(9), 9006–9014 (2010).
    [Crossref] [PubMed]

2010 (1)

2008 (1)

2004 (1)

2003 (1)

H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
[Crossref]

2001 (1)

M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A Phys. 88(1), 41–46 (2001).
[Crossref]

2000 (1)

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys. 79(1), 1–7 (2000).
[Crossref]

1993 (1)

1980 (1)

Barton, J. S.

Bennion, I.

Carolan, T. A.

Chung, Y.

Dandridge, A.

Gerhard, E.

M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A Phys. 88(1), 41–46 (2001).
[Crossref]

Hall, C. J.

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys. 79(1), 1–7 (2000).
[Crossref]

Hand, D. P.

Hwang, D.

Jackson, D. A.

Jiang, M.

M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A Phys. 88(1), 41–46 (2001).
[Crossref]

Jiang, X.

Jones, J. D. C.

Lin, D.

Meggitt, B. T.

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys. 79(1), 1–7 (2000).
[Crossref]

Metivier, V.

H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
[Crossref]

Moon, D. S.

Moon, S.

Morteau, E.

H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
[Crossref]

Nguyen, L. V.

Niezrecki, C.

Ouisse, E.

H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
[Crossref]

Priest, R.

Seat, H. C.

H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
[Crossref]

Tian, Y.

Tveten, A. B.

Wang, W.

Wang, X.

Weir, K.

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys. 79(1), 1–7 (2000).
[Crossref]

Wu, N.

Xie, F.

Zhang, L.

Zhang, W.

Appl. Opt. (1)

Meas. Sci. Technol. (1)

H. C. Seat, E. Ouisse, E. Morteau, and V. Metivier, “Vibration-displacement measurements based on a polarimetric extrinsic fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 14(6), 710–716 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Sens. Actuators A Phys. (2)

M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A Phys. 88(1), 41–46 (2001).
[Crossref]

B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys. 79(1), 1–7 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The principle of the measurement system.

Fig. 2
Fig. 2

The schematic diagram of the feedback loop circuit.

Fig. 3
Fig. 3

The interferometric signals are fluctuating when the feedback loop is out of operation.

Fig. 4
Fig. 4

The interferometric signals before and after the feedback loop is turned on.

Fig. 5
Fig. 5

The single-wavelength interferometeric signal and the synthetic-wavelength interferometric signal while modulating the optical path difference periodically.

Fig. 6
Fig. 6

The zoom of Fig. 5 in the area of the top of synthetic-wavelength interferometric signal.

Fig. 7
Fig. 7

The Fourier Transform of the signal from PD2.

Fig. 8
Fig. 8

The displacement measurement results.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

i P D 1 = i 0 [ 1 + k cos ( ϕ d 1 + ϕ S 1 ) ] + i 0 [ 1 + k cos ( ϕ d 2 + ϕ S 2 ) ] ,
i P D 2 = i 0 [ 1 + k cos ( ϕ d 2 + ϕ S 2 ) ] ,
u P D 1 ( 1 ) = u 0 [ 1 + k cos ( ϕ d 1 + ϕ S 1 ) ] + u 0 [ 1 + k cos ( ϕ d 2 + ϕ S 2 ) ] ,
u P D 2 ( 1 ) = u 0 [ 1 + k cos ( ϕ d 2 + ϕ S 2 ) ] ,
u P D 2 ( 2 ) = K sin ( ϕ d 2 + ϕ S 2 ) ,
u P D 2 ( 3 ) = K 1 cos ( ϕ d 2 + ϕ S 2 ) ,
u P D 2 ( 4 ) = K 2 Δ ϕ ,
u P D 1 ( 2 ) = u 0 [ 1 + k cos λ 2 λ 1 π 2 ] + u 0 ,
u P D 2 ( 5 ) = u 0 .
u P D 1 ( 3 ) = u 0 { 1 + k cos [ λ 2 λ 1 π 2 + 2 Δ L λ 1 2 π ] } + u 0 { 1 + k cos [ π 2 + 2 Δ L λ 2 2 π ] } ,
u P D 2 ( 6 ) = u 0 { 1 + k cos [ π 2 + 2 Δ L λ 2 2 π ] } .
u P D 1 ( 4 ) = u 0 { 1 + k cos [ λ 2 λ 1 π 2 + 2 ( Δ L c t ) λ 1 2 π ] } + u 0 { 1 + k cos [ π 2 + 2 ( Δ L c t ) λ 2 2 π ] } ,
u P D 2 ( 7 ) = u 0 { 1 + k cos [ π 2 + 2 ( Δ L c t ) λ 2 2 π ] } ,
u P D 1 ( 5 ) = 2 u 0 + u 0 k cos 1 2 [ λ 2 λ 1 λ 1 π 2 + λ 2 λ 1 λ 1 λ 2 4 π ( Δ L c t ) ] cos 1 2 [ λ 2 + λ 1 λ 1 π 2 + λ 2 + λ 1 λ 1 λ 2 4 π ( Δ L c t ) ] .
1 2 [ λ 2 λ 1 λ 1 π 2 + λ 2 λ 1 λ 1 λ 2 4 π ( Δ L c t ) ] = π ,
c t 0 = Δ L λ 1 λ 2 2 ( λ 2 λ 1 ) + λ 2 8 .

Metrics